
Technical Report

CIMoL: A language for modeling interactions in
people-driven collaborative processes

Maximiliano Canché, Sergio F. Ochoa, Daniel Perovich

Computer Science Department, University of Chile

Abstract. Mobile computing has allowed us to conceive software systems to support mobile
collaborative work in several business domains, like hospital work, emergency response, and
urban maintenance. A key design aspect to model these systems is the representation of the
computer-mediated interaction scenarios in which collaboration among mobile workers takes
place. According to literature, some modeling languages and notations have been proposed to
represent these interaction scenarios. However, given the complexity of representing large
scenarios and the difficulty of involving stakeholders to validate the models, among other features,
such proposals have shown limitations. In order to address them, this work presents CIMoL
(Computer-Mediated Interactions Modeling Language), which can be used to model these
interaction scenarios according to a set of capabilities these representations should have. The
language can be used to support practitioners and researchers of collaborative systems to specify
the computer-mediated interaction scenarios, depending on their current needs or mandatory
capabilities for their representations.

1. Introduction

The use of visual models emerged decades ago, as a popular approach to represent several
aspects of a software product. These models have been successfully used in the software
development phases to represent systems features, and also to perform early validation of these
systems mainly during the analysis and design stages.

Some of these modeling languages are focused on modeling particular systems types; for
instance, the systems supporting people-driven collaborative processes (PDCPs) or unframed
processes, where a workflow cannot be prescribed for such a process (Cardoso et al., 2016) . In
PDCPs, mobile workers perform multiple tasks in parallel, assigning their attention to the most
critical or urgent activity at each moment. Thus, the participants coordinate their activities on-the-
fly, considering their own work context and consequently they decide with whom and when to
interact.

Considering the features of PDCPs, Canche et al., (2022) identified modeling languages and
notations that can be used to specify interaction scenarios involved in such processes. That work
establishes a set of capabilities that should have the models built using visual languages in order
to be useful in practice. Additionally, the authors conduct a study in which existing languages and
notations are evaluated by experts.

Based on the aforementioned capabilities and trying to deal with the limitations of current
languages and notations, this work presents CIMoL (Computer-Mediated Interactions Modeling

https://www.zotero.org/google-docs/?zBXKbb

Language), a modeling language that can be used to represent computer-mediated interaction
scenarios involved in PDCP.

Next section briefly describes the modeling languages and notations reported in the literature,
which can be used to specify computer-mediated interaction scenarios. Section 3 presents
CIMoL, the proposed modelling language and Section 4 shows the software modeling tool to
assist Engineers to model and validate the interaction scenarios. Section 5 discusses the
improvements and limitations of this language. Finally, Section 5 presents the conclusions and
future work.

2. Related work

Researchers from process engineering and computer-supported collaborative work communities
have studied and proposed several notations and languages to specify these interaction
scenarios. Next, we briefly introduce the most relevant ones for this modelling domain.

Case Management Model and Notation (CMMN). This is a visual modeling notation (OMG, 2016),
based on the Case Handling paradigm (Aalst et al., 2005), and adapted to specify processes
where the activities depend on real-time evolving circumstances. A process instance is referred
to as a case, and workers in charge of a particular case can decide on how the goal of that case
should be reached. A case has a design-time and run-time phase. In the first phase, business
analysts are engaged in the case modeling, which includes defining tasks that are always part of
predefined segments in the case model. In the run-time phase, case workers execute the plan,
particularly by performing tasks as planned, while the plan may continuously evolve, since the
workers can change or add discretionary tasks to the plan in run-time. Although the purpose of a
CMMN model is to provide guidance to engineers about what can be done for successful process
execution, instead of defining design-time conditional flows, CMMN models are limited to address
the dynamic nature of the people-driven collaborative processes.

BPMN Plus. This modeling notation is based on the standard BPMN, and aims to be capable of
modeling PDCPs (Allah Bukhsh et al., 2019). This notation proposes several interesting modeling
concepts, for instance, optional activities (that can be skipped during the process execution
considering the process context), undo activities (that need to be undone considering the
particular process context), event (occurrence of real-world event related to process), and
performer (role that should perform an activity). Although this notation has shown to be useful and
expressive for modeling specific aspects of PDCPs, it does not address various of the capabilities
presented by Canche et. al. (2022). For instance, the notation is targeted to engineers and BPMN
experts, consequently hindering the shared understanding between developers and stakeholders.

BPMN for Sensitive Business Process (BPMN4SBP). This language allows specifying PDCPs
considering six modeling dimensions (Hassen et al., 2019). Through these specifications it is
possible to represent interaction scenarios and explore their dynamic. The scenarios specification
includes several types of tasks and participants, and also knowledge / information flow. Although
BPMN4SBP has several useful elements to model PDCPs, it has similar limitations than BPMN
Plus, since it is a notation proposed to be used for technical people.

Little-JIL and hADL. (Dorn et al., 2014) proposed the joint usage of two human-centric
specification languages to model interaction-intensive processes. These languages are Little-JIL
(Cass et al., 2000), that is a process-centric language, and hADL (human Architecture Description
Language) (Dorn & Taylor, 2012), that is a structure-centric human interaction language. hADL
describes how humans interact to achieve a common goal and Little-JIL depicts processes as

https://www.zotero.org/google-docs/?yiQWmu
https://www.zotero.org/google-docs/?PrAq4x
https://www.zotero.org/google-docs/?1uOcIa
https://www.zotero.org/google-docs/?6LnRAu
https://www.zotero.org/google-docs/?5fJiQU
https://www.zotero.org/google-docs/?YARHOy
https://www.zotero.org/google-docs/?yQRw5I

hierarchies of steps. The joint usage allows modelling collaborating users and collaboration
objects (e.g., messages, stream, and shared artifact). Although this proposal provides an
interesting modeling capability, the joint usage of these languages increases the complexity of
modeling PDCPs, and reduces the feasibility to include stakeholders in the process specification,
analysis and validation.

Mobile Collaboration Modeling (MCM). This visual notation (Herskovic et al., 2019) allows
specifying actors and interactions among them, in scenarios of PDCPs. These interaction
scenarios are specified through a directed graph, in which the nodes represent the roles and the
edges represent the interactions among them. The nodes and edges have several types that
characterize the participants and the services required by them to interact. This notation allows
involving stakeholders in the process specification and validation, however, it only has one
abstraction level to specify the interaction scenarios. Furthermore, it does not consider
mechanisms for managing the complexity or size of the models representations.

IoT Modeling. This is a proposal based on MCM, and defined to represent interactions in human-
centric wireless sensor networks through an interaction graph (Monares et al., 2014). The
language allows designers to model complex interactions between network nodes that can be
human-based sensors, mules, witness units, regular sensors, or actuators. The arcs are
stereotyped as in MCM. This notation is actually targeted at developers and it is difficult to be
used by stakeholders. Likewise, it does not consider mechanisms for managing the complexity or
size of the collaborative process and allows modeling only human-centric wireless sensor
networks.

Collaboration graphs. These graphs are extensions of social network diagrams, adapted to
specify integrated business activities (Hawryszkiewycz, 2005, 2009). In order to manage the
complexity and size of the models, this notation recommends using a combination of business
activities, interaction graphs, and knowledge requirements as basic constructs for specifying the
interaction models. Although this proposal has several valuable insights, it is limited to represent
unframed processes. Moreover, the modeling concepts considered in this notation correspond to
the integrated enterprises domain; i.e., it represents a domain specific language. Similar to the
previous proposals, collaboration graphs are not easy to understand by stakeholders, therefore,
they are little suitable to build shared understandings between developers and stakeholders.
Given the interactions representations are limited in these graphs, developers are limited to derive
software requirements (particularly, interaction services) from them.

Computer-mediated Interaction Modeling Notation (CIMoN). This notation visually represents the
roles played by the participants in dynamic work scenarios involved in PDCPs (Canché & Ochoa,
2018; Canché et al., 2019). This notation defines interaction graphs that are the result of a design
activity among developers and stakeholders. The analysis of these graphs allows determining
and agreeing the set of interaction services that should be embedded in the mobile application.
This notation allows specifying essential aspects, e.g., the interaction type (synchronous,
asynchronous or both of them), messages type, and the availability of the participants to interact
with others. Although CIMoN was conceived to deal with the limitations of the previous notations,
it did not reach such a goal. For instance, although the model seems to be understandable for
stakeholders, its representation still needs some improvements to ease reaching of shared
understandings between developers and stakeholders (Canché et al., 2019). Moreover, the
notation does not consider mechanisms for managing the complexity and size of an interaction
model representation.

https://www.zotero.org/google-docs/?OS9ETE
https://www.zotero.org/google-docs/?0NK53k
https://www.zotero.org/google-docs/?GgcbJd
https://www.zotero.org/google-docs/?g7oV7h
https://www.zotero.org/google-docs/?g7oV7h
https://www.zotero.org/google-docs/?Ec1DDg

3. Computer-Mediated Interactions Modeling
Language

Computer-Mediated Interactions Modeling Language (CIMoL) was designed to model interactions
among roles in scenarios involved in people-driven (or knowledge intensive or unstructured
processes) collaborative processes. Since limitations found in the literature to design systems
that support such processes, CIMoL was conceived considering such limitations and designed
using the principles of visual languages’ design from (Moody, 2009).

3.1 Language Foundations

A Process is the main element in CIMoL. This element represents a people-driven process, which
is composed of sequential Phases (at least one of them). Likewise, each Phase can be constituted
by Work Ambits, which are interaction scenarios that can be executed in parallel and each of them
can possibly be performed in more than one Phase. Each Work Ambit can be represented in
CIMoL by an interactions’ model between roles of actors participating in the collaborative process.

To build each interactions’ model a bottom-up strategy should be followed. Moreover, the
following assumptions are considered:

● The process participants are both autonomous and multitask units that auto regulate their
activities according to their own criteria, but considering the general business process
being performed and the current states from their local and process contexts.

● The autonomous units manage a list of pending activities that are prioritized according to
a criteria defined by each participant (i.e. urgency level, if the activity is critical, etc.). The
activities priority change on the time due to external factors and also by the local actions
from each unit.

● Since the work context is infinite (McCarthy, 1993), some awareness services can be
conveyed to the autonomous units, and consequently they can interpret such information
and based on that, to decide their following action.

● The autonomous units decide their workflow and the temporality of their actions according
to their current context.

● The modeling notation only represents the computer-mediated interactions.

3.2 Language Metamodel

A metamodel, illustrated in Figure 1, was created to describe the abstract syntax of CIMoL. Such

a metamodel presents the main concepts of modeling and the relationships among them. A UML

class diagram was used to specify it.

https://www.zotero.org/google-docs/?Xp6Exe
https://www.zotero.org/google-docs/?Zo6Vja

Fig. 1 CIMoL metamodel

As mentioned, the main concept of the metamodel is Process, which represents a people-driven

collaborative process, that is, the main work environment of the remaining concepts. Such

concepts and their relationships are described as follows:

● Each Process contains zero or more roles (Role concept), which represent roles of actors

participating in the process, and one or more services (Service concept), which represent

the software services required by the roles in the process.

● Each Process is composed of one or more phases (Phase concept), which can be

considered as sequential macro activities of the process.

● Each Phase is composed of one or more work ambits (WorkAmbit concept), which

represent the interaction scenarios (subprocesses) we want to model. The work ambits

can be executed in parallel and can belong to more than one phase.

● A WorkAmbit is composed of zero or more interactions (Interaction concept) between two

roles (Role concept). Each interaction contains two ends (InteractionEnd concept), and

each end is associated with specific software services (Service concept) that correspond

to a particular role (Role concept).

● Finally, a role (specific relationship) can be associated to zero or more roles (general

relationship), which correspond to a relationship comparable to an is-a relationship from

UML.

3.3 Description of the language: common constructions

The development of CIMoL considered two views (or dialects): Stakeholder view and Developer
view. Stakeholder view is targeted to stakeholders (non-technical people involved in the elicitation
stage) whereas Developer view is targeted to software engineers. Regardless of the dialect, each

model is based on the graph concept in which the nodes represent the roles performed by the
actors participating in the collaborative process (i.e, the autonomous units), and the links indicate
the interactions between them. This notation allows stakeholders and software engineers to
represent each link between two nodes as a point-to-point relationship, which reduces the
complexity in the design of collaborative systems. Table 1 illustrates the visual representation of
the node types considered in both dialects.

Table 1.Node types considered in the two dialects of the language

Node type
(Stakeholder

view)

Node type
 (Developer

view)

Meaning

Human actor: Person that uses the system to play a particular role
during the collaboration process. These nodes are able to interpret

their own work contexts and take actions accordingly. The
availability of these units to collaborate with others is defined by
themselves, depending on their work context at the moment that

a collaboration request is delivered.

Autonomous agent: Autonomous software component that

behaves according to a preset list of actions. These actions can
be context-aware or context-independent. It is assumed that these
units are always available to collaborate when required.

Repository: Passive software component (e.g., a data repository)
that only stores data and produces answers to requests that

were triggered by human actors or autonomous agents. Similar
to the previous case, it is assumed that these units are always
available to collaborate and also enable others to do it.

Additionally, for both dialects, the interaction between two nodes is represented as a
communication link (physical or virtual) at the time they decide to collaborate. No communication
link is represented if there is no interaction’ requirement between two nodes. Moreover, a
relationship is-a is used to represent that a role A can also be a role B (similarly to UML language).
These two types of links are described in Table 2.

Table 2. Link types considered in the language notation

Link type Meaning

There is an interaction between two nodes. This means that one participant

requires communication with the other. A link on the same node (cycle)
represents an interaction among actors playing the same role.

There is an is-a relationship. The end node without an arrow (“son” role) can

play the end role with a white arrow (“father” role). Both roles in the
relationship must be of the same type (i.e. cycles are not allowed when this
link is used).

3.4 CIMoL notation for the developer view

Particularly, for the developer view, the nodes’ representation contains additional information in

order to facilitate its analysis. In this view, both optional and mandatory roles are visually labeled,

as well as the number of participants per role required to perform the process. Table 3 shows this

representation. Although in the table the visual information is represented with a human-actor

node type, the same representation applies to the other node types.

Table 3. Representation of the number of participants per role

Symbol in

node

Meaning

Zero or many. The number of role instances to conduct the process can be zero or a
higher number (i.e. the role is optional).

Zero or one. The number of role instances to conduct the process can be zero or

one (i.e. the role is optional).

Exactly one. The number of role instances to conduct the process must be exactly
one, that is, the role is mandatory.

One or many. The number of role instances to conduct the process must be at least
one (i.e. the role is mandatory).

Moreover, the user type is visually labeled according to the application use for each node, which
aims to specify whether the user will use the application in development or not. Table 4 illustrates
this representation: a white-figure role represents an internal user; a black-figure role represents
an external user; and a gray-figure role represents an internal/external user. Although in the table

the visual information is represented with a human-actor node type and with zero-or-many
instances number, the same representation applies for the other node types.

Table 4. Representation of user type according to the application use for each node

Symbol in
node

Meaning

Internal user. The users of the role will use the collaborative application in
development to interact.

External user. The users of the role will not use the collaborative application in

development to interact (i.e. they possibly use an external application).

Internal/External user: The users of the role will use the collaborative application in
development, an external application, or a mix of both to interact.

Additionally, in is-a relationships, the abstract roles are visually labeled. By default, a role is

considered concrete. When a role is specified as abstract in an is-a relationship, it means this role

will not be instantiable, that is, it will not have its own actors performing the role and must use

actors of the “children” roles to carry out its activities. Table 5 shows this representation. Similar

to previous specifications, although in the table the visual information is represented with a

human-actor node type and with zero-or-many instances number, the same representation

applies for the other node types.

Table 5. Representation of abstract and concrete roles

Symbol in

node

Meaning

Abstract role. The role does not have its own instances, that is, actors playing the
role must be existing actors from the roles using the is-a relationship.

Concrete role. The role has its own instances. By default, each role is a concrete
role.

3.5 Services specification in interactions

On the other hand, regardless of the used view (stakeholder or developer view), the
communication, transmission, and interaction awareness services must be defined for each node
in order to interact with other nodes. Tables 6, 7, and 8 show the typical communication,
transmission, and interaction awareness services, respectively.

Table 6. Services (requirements) supporting communication

Service Meaning

Start audioconference The actor playing the role can start an audio conference

Start videoconference The actor playing the role can start a video conference

Open whiteboard The actor playing the role can open a whiteboard

Send text message The actor playing the role can send a text message

Send audio The actor playing the role can send audio

Send video The actor playing the role can send video

Send image The actor playing the role can send images

Send structured data The actor playing the role can send structured data

Send file The actor playing the role can send files

Table 7. Services supporting transmission

Service Meaning

Send to one The actor playing the role can send data to only one receiver in the interaction

Send to many The actor playing the role can send data to several receivers at the same time
in the interaction (it includes the Send to one service)

Send to all The actor playing the role can send data to several receivers at the same time

in the interaction (it includes both the Send to one and Send to many
services)

Recipients can reply to

sender

The recipients in the interaction can answer to the transmitter

Recipients can reply to
all

The recipients in the interaction can answer to all the actors playing the
sender role

Priority The messages (data) sent by actors playing the role are labeled as priority

Encryption The messages (data) sent by actors playing the role are encrypted

Table 8. Awareness services

Service Meaning

Incoming messages

Awareness for incoming messages (from actors playing the other role in the
interaction) is activated

Outgoing messages
status

Awareness for outgoing messages is activated

Other's presence

Awareness for presence (from actors playing the other role in the interaction)

is activated

Other's availability

Awareness for availability (from actors playing the other role in the interaction)
is activated

Other's location

Awareness for location (from actors playing the other role in the interaction) is
activated

Communication log Awareness for communication log (history) is activated

In specific situations, specifying communication services for one role in the interaction will be
required, whereas a role will be without established services (i.e. there is a unidirectional
interaction regarding the services). In that case, the direction will be represented with an arrow,
as shown in Table 9.

Table 9. Services directionality

Directionality Meaning

Role A has one or more communication services defined in the interaction,
whereas Role B has not defined communication services

This can represent two possible situations: a) both Role A and Role B have

communication services defined; or b) both roles have not defined
communication services in the interaction (default situation)

3.6 Interaction graph generation using CIMoL

The generation of a role interaction graph involves the steps shown in Table 10. First of all, the

roles (nodes) involved in the collaboration process and their types must be identified. The second

step involves identifying the interactions between nodes (i.e., the relationships). Third, the is -a

relationships between nodes could be identified if necessary. Fourth, the following characteristics

related to the extended notation of CIMoL have to be identified: optional and mandatory roles,

number of participants per role required to carry out the collaborative process, user type according

to the application use (internal, external, internal/external), and abstract nodes if required. Finally,

the communication, transmission, and interaction awareness services must be identified for each

interaction.

Table 10. Steps for the role interaction graph generation with CIMoL

Step Description

1 Identification of roles (nodes) and their types

2 Identification of interactions (relationships between nodes)

3 Identification of is-a relationships between nodes

4 Identification of extended-notation characteristics for the nodes: optional and mandatory roles,
number of participants per role required to perform the process, user type regarding the

application use, and abstract nodes if required

5 Identification of interaction services (communication, transmission, and interaction awareness

services)

The next subsection presents an application example that illustrates how to use the proposed
notation, based on the model of a particular interaction scenario.

3.7 Application Example using CIMoL

In order to exemplify the use of the proposed notation, let us consider a process denominated
Informal Elderly Caregiving in which families organize themselves to care for their older members.
The example is based on the scenarios described in (Gutierrez & Ochoa, 2017), where family
members assume implicit roles to fulfill their duties.

For simplicity, we assume that the mentioned process is constituted by only one phase, and that
phase is composed by only a work ambit, which we will name Emergency Management. Figure 2
illustrates the two representations (stakeholder and developer view) using the proposed language
for the interaction scenario corresponding to the ambit Emergency Management. That interaction
scenario involves five roles: Emergency service, Caregiver, Elderly, Employee, and Family
caregiver. Emergency service is from agent type, whereas the remaining roles are human actors.

Employee and Family caregiver, which are specific roles, have an is-a relationship with Caregiver,
which is a general role. That means the first two roles are also Caregiver.

Caregiver and Elderly have a bidirectional interaction. Furthermore, there are two unidirectional
relationships: Caregiver-Emergency service, and Elderly-Emergency service (both Caregiver and
Elderly can initiate communication with Emergency service but not vice versa).

Since Employee and Family caregiver are also from the type Caregiver, both can interact with
Elderly and Emergency service. Finally, since Caregiver is a concrete role, actors playing such a
role can have their own instances, that is, they can or cannot use instances of Employee or Family
caregiver to perform their activities.

(a) (b)

Fig. 2. CIMoL representation of the specific scenario of Emergency Management for the process Informal
Elderly Caregiving: (a) stakeholder view; (b) developer view

https://www.zotero.org/google-docs/?ofhs36

4. CIMoL Modeling Tool

A software tool was developed to assist engineers to model and validate the interaction scenarios,
considering the concepts specified previously in order to support the requirement engineering
participants from the in-development application. Additionally, an automatic prototypes generator
also was developed in order to help validate the requirements specified by stakeholders and
engineers. The main interfaces and functionalities of this software tool are described below.

4.1 Management of processes, phases, and work ambits

4.1.1 Processes Management

The processes management’s main interface is shown in Figure 3. This interface shows the
existing collaborative process created and it is in charge of the management of them, which
includes creating new processes, opening a selected process, as well as renaming, copying, and
deleting existing processes.

Fig. 3. Processes management’s interface

4.1.2 Phases and work ambits management

When a process is edited, the interface for the management of phases and work ambits of it is
visualized. For instance, the interface of the process named “Informal Eldery Caregiving” is
illustrated in Figure 4. Such a process is constituted by two phases, each of which has a different
number of work ambits.

Fig. 4. Interface for the management of phases and work ambits from the process Informal Elderly
Caregiving

The functionality of this interface includes the following:

● Add phase: which is performed in a sequential manner, that is, creating the next number
after the last phase.

● Rename and delete phase: which are performed through a contextual menu in each phase
(Figure 5).

● Add ambit: which allows us to assign the new ambit to one or more phases, as shown in
Figure 6, which means the ambit can belong to more than one phase.

Fig. 5. Contextual menu for each phase

Fig. 6. Interface for the creation of work ambits

Besides, each work ambit count on the following functionalities, such as shown in the contextual
menu of the Figure 7:

● View in modeler: which open the interaction scenario corresponding to the selected work
ambit in the visual modeler

● Copy ambit: which copies the selected work ambit to other phase of the process
● Configure ambit: which reassigns the selected ambit to zero or more phases
● Rename ambit: which changes the name of the selected work ambit
● Remove ambit from phase: which removes the selected work ambit from its current phase

Fig. 7. Contextual menu for each work ambit

4.1.3 Models manipulation

When the option “View in modeler” (Fig.7) is selected, the software tool opens the interaction
scenario corresponding to the selected work ambit in the visual modeler interface. An example of
the interaction scenario’s modeler interface is shown in Figure 8, which corresponds to a role
interaction graph from the work ambit named Emergency Management.

Fig. 8. Interface for role-interaction scenario’s modeler (stakeholder view)

When a node is selected in this visual model interface using the stakeholder view, only the
communication services can be established for each interaction from the node. For instance,
when the node named “Elderly” is selected we can define its services (communication,
transmission, and awareness services) as shown in Figure 9. For simplicity, in this figure only
some services are visualized.

Fig. 9. Node selection in stakeholder view: definition of services for node interactions

Differently to the stakeholder view, when a node is selected using the developer view we can

define the node properties, in addition to the services of the node interactions as illustrated in

Figure 10, which shows the properties for the node named Elderly. With respect to abstract nodes,

the properties are slightly different, as shown in Figure 11 for the Caregiver node. All the

properties for each node type were shown in the description of the language, previous section.

Fig. 10. Node selection in developer view: definition of properties for the node and services for node interactions

Fig. 11. Abstract node: Caregiver properties

Regarding the interactions between each pair of nodes, when one of them is selected, the

services for each direction can be defined. For instance, for the Caregiver-Elderly interaction, the

services for Caregiver (Caregiver → Elderly) as well as the services for Elderly (Elderly →

Caregiver) can both be defined, as illustrated in Figure 12.

Fig. 12. Interaction selection in developer view: definition of nodes services

Additionally, in order to support the models management, typical top-bar options were defined in

the visual software tool. They are briefly described in Table 11.

Table 11. Top-bar from the visual modeler

Icon(s) Function

Create existing role

 Create human role

 Create agent role

Create repository role

 Create interaction (link between two roles)

 Create an is-a relationship (relationship between two roles)

Select element

Panning motion

Zoom in

Zoom fit

Zoom out

 Delete selected element

Arrangement

Undo last action

Redo last action

 Make report (list of interaction services)

 Download graph image

 Help

 Change to stakeholder/developer mode

Show interactions with a selected node

Show full model view

Change to mockup interface

Download JSON model (the model is saved in a JSON file)

 Import model (the model is open from a JSON file)

4.2 Mockups of the in-development collaborative application

The software tool contains a module to generate automatic prototypes for human roles of the in-
development collaborative application models in order to help the RE participants in the
requirements validation. In that, software services specified in the interactions for each role are
visualized in the form of visual elements. In Figure 13 the main interfaces of the mockups for the
role Caregiver are illustrated.

(a) (b) (c)

Fig. 13. Main interfaces of the mockups for the role Caregiver: (a) Home; (b) Notifications; (c) Contacts

Moreover, this module contains in its right size a role selector, in which the role desired can be
selected in order to visualize its interactions information, as shown in Figure 14. Such information
can be customized (modifying the cells values on the table) in order to show how that information
is visually represented at-the-moment in the mockups.

Fig. 14. Interactions information of a selected role

4.2.1. Home mockup

The main insight for this mockup is to take into account the business functionality and explain to
stakeholders why this space exists in the mockups. Since such a functionality is not the aim of
this work, we only represent it with the label “App functionality will be here” (Figure 13.a). For
example, if the collaborative application is targeted to Emergency Management issues, the
functionality will be related to them.

4.2.2. Notifications mockup

This mockup shows the visual representation for the awareness service named “Incoming
messages”, which refers to the notification of incoming messages towards the selected node. For
instance, Figure 13.b shows the incoming messages for the role “Caregiver”, which include a
message from an actor with the role “Elderly”. That means, the awareness service named
“incoming message” for the role “Caregiver” was selected in its interaction with the role “Elderly”.
Additionally, a message icon is shown on the right side of each notification on this interface in
order to help understand its meaning.

4.2.3. Contacts mockups

This mockup initially shows actors playing roles that can be contacted by actors performing the
role “Caregiver”. For instance, Figure 13.c shows all the actors whose roles have interaction with
the role “Caregiver”, specifically with actors playing the roles “Emergency service” and “Elderly”.
Additional awareness information can be displayed in the Contacts mockup: if the awareness
service named “Other’s location” is selected for each role with interaction with the current role, a
location icon is visualized on the right side of the Contacts mockup in order to help understand its
meaning, as shown in Figure 13.c.

Besides, this mockup allows us to select a specific role in order to show only actors playing such
a role. For instance, it is possible to select the role “Elderly” (Figure 15.a) in order to visualize all
the actors performing that role (Figure 15.b).

(a) (b)

Fig. 15. Selecting a specific role in Contacts mockup

In order to help understand to stakeholders how the interaction services can be embedded in an
collaborative application, different icons were integrated in these mockups as illustrated in the
Figure 16 (a-d). When communication is established with an actor playing a specific role with
which is carrying out interaction, a mockup with the structure of the Figure 16.a is visualized. In
that, we can observe several elements representing the services specified for the interactions in
the software modeling tool. Figure 16.b shows the particular mockup when a call is taken. Figure
16.c illustrates the result when the whiteboard is enabled, and Figure 16.d shows when the option
of videoconference is selected. The icons in such mockups are briefly described in Table 12.

(a) (b) (c) (d)

Fig. 16. Interactions services embedded in the mockup

Table 12. Icons for the Interactions services embedded in the mockup

Icon(s) or Text Meaning

Start audioconference

Start videoconference

Open whiteboard

 Send text message

Send audio

Send video

Send image

Send structured data

Send file

 Priority

Encryption

Incoming messages

 Outgoing messages status

(Circle above
the actor image)

Other's presence

(Circle above

the actor image)
Other's availability

Other's location

(Conversation

history)
Communication log

Finally, services supporting the transmission (such as “send to one”, “send to many”, and “send

to all”) are represented in the mockups emulating their functionality. For instance, allowing select

only one actor if the transmission service named “send to one” is selected. For the case of the

services “recipients can reply to sender” and “recipients can reply to all”, they are represented if

the service “Communication log” is selected.

5. Discussion
Most of the model representations make explicit the roles of the actors participating in a PDCP,

and also the interactions among them. However, they still are limited to involve the stakeholders

in the process of building a joint and agreed interaction schema, and then derive interaction

services from it. If the interaction schemas (or scenario representations) are easy to understand

only for technical people, the capability of the development team to analyze, validate and refine

the interaction scenarios will be limited.

Trying to address such difficulty and other limitations of existing languages, some features of

CIMoN (which is the CIMoL’s predecessor) are redesigned in order to improve its capabilities.

Concerning the capabilities “representing the interactions at different abstraction levels”, and

“managing the complexity and size of the interaction scenario specifications”, which were

described in (Canché et al., 2022) and represent limitations for several existing visual languages,

they have been addressed properly by CIMoL. Additionally, regarding the capabilities “being

understandable for stakeholders” and “easing the building of a shared understanding between

stakeholders and developers about the scenarios to be supported”, CIMoL has defined two visual

dialects targeted to two different audiences (developers and stakeholders).

Of course, researchers and practitioners can decide to overlook CIMoL features related to these

capabilities. For instance, if the interaction scenarios that people have to represent are small and

with low complexity, or if the stakeholders have enough experience with visual languages,

language’s capabilities related to these aspects may not be used. However, it is worth knowing

the advantages of the language if the use of such features is required.

We acknowledge the software modeling tool has some limitations. For instance, it does not exploit

all the capabilities described in the metamodel of the language since this tool has predefined

services and it does not allow to add more of them dynamically, whereas for the metamodel it is

not a constraint. Another limitation is the lack of an automatic procedure to integrate the

information of several sub-models towards one representing the whole system. However,

developing extensions to the software tool considering such features, such limitations can be

addressed.

6. Conclusions and future work

In this work, a role-interaction modeling language named CIMoL was presented. This proposal

considered a set of capabilities that the models built using visual languages should have in order

to be useful in practice. For instance, in order to address the capabilities “Being understandable

for stakeholders” and “Easing the building of a shared understanding between stakeholders and

developers about the scenarios to be supported”, the language includes two dialects: stakeholder

view, which is aimed at customers, and developer view, which is targeted towards suppliers

(engineers involved in the development of a collaborative system).

Although this new proposal seems to address the limitations of existing proposals, and be more

usable and expressive than its predecessor, CIMoN, it will be confirmed by performing future

work. Future work includes the following tasks:

● Evaluate the capabilities of CIMoL specifications to “be understandable for stakeholders”

and “ease the building of a shared understanding between stakeholders and developers

about the scenarios to be supported”. The models built using visual languages should

reach these objectives in order to be useful in practice.

● Evaluate the concrete syntax of CIMoL.

● Implement the automatic generation of the complete model, based on a set of simple

interaction models. The modeling tool will also allow to generate a complete interaction

model by composing simple models (small representations) generated by the designers.

This proposal represents a modeling language to specify people-driven processes, and the user

interaction scenarios involved in it. Thus, the language will help software engineers inform the

analysis and design of the collaborative systems that support these processes.

References

Aalst, W. M. P. van der, Weske, M., & Grünbauer, D. (2005). Case handling: A new paradigm

https://www.zotero.org/google-docs/?b9YoSd

for business process support. Data & Knowledge Engineering, 53(2), 129-162.

https://doi.org/10.1016/j.datak.2004.07.003

Allah Bukhsh, Z., van Sinderen, M., Sikkel, K., & Quartel, D. (2019). How to Manage and Model

Unstructured Business Processes: A Proposed List of Representational Requirements.

E-Business and Telecommunications (pp. 81-103). Springer International Publishing.

Canché, M., & Ochoa, S. F. (2018). Modeling Computer-Mediated User Interactions in

Ubiquitous Collaborative Systems. En J. Bravo & O. Baños (Eds.), 12th International

Conference on Ubiquitous Computing and Ambient Intelligence, UCAmI 2018, Punta

Cana, Dominican Republic, December 4-7, 2018 (Vol. 2, Número 19, p. 1250). MDPI.

https://doi.org/10.3390/proceedings2191250

Canché, M., Ochoa, S. F., Perovich, D., & Gutierrez, F. J. (2019). Analysis of notations for

modeling user interaction scenarios in ubiquitous collaborative systems. Journal of

Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-

01578-7

Canché, M., Ochoa, S. F., & Perovich, D. (2022) Understanding the Suitability of Modeling

Languages and Notations to Represent Computer-Mediated Interaction Scenarios.

Accepted in Information Technology and Systems. Lecture Notes in Networks and

Systems. Springer. To appear in Feb. 2022.

Cardoso, E., Labunets, K., Dalpiaz, F., Mylopoulos, J., & Giorgini, P. (2016). Modeling

Structured and Unstructured Processes: An Empirical Evaluation. En I. Comyn-Wattiau,

K. Tanaka, I.-Y. Song, S. Yamamoto, & M. Saeki (Eds.), Conceptual Modeling (pp. 347-

361). Springer International Publishing.

Cass, A. G., Lerner, B. S., Sutton, S. M., Jr., McCall, E. K., Wise, A., & Osterweil, L. J. (2000).

Little-JIL/Juliette: A Process Definition Language and Interpreter. Proceedings of the

22Nd International Conference on Software Engineering, 754-757.

https://doi.org/10.1145/337180.337623

Dorn, C., Dustdar, S., & Osterweil, L. J. (2014). Specifying Flexible Human Behavior in

Interaction-Intensive Process Environments. En S. Sadiq, P. Soffer, & H. Völzer (Eds.),

Business Process Management (pp. 366-373). Springer International Publishing.

Dorn, C., & Taylor, R. N. (2012). Architecture-Driven Modeling of Adaptive Collaboration

Structures in Large-Scale Social Web Applications. En X. S. Wang, I. Cruz, A. Delis, &

G. Huang (Eds.), Web Information Systems Engineering—WISE 2012 (pp. 143-156).

Springer Berlin Heidelberg.

Gutierrez, F. J., & Ochoa, S. F. (2017). It Takes at Least Two to Tango: Understanding the

Cooperative Nature of Elderly Caregiving in Latin America. Proceedings of the 2017

ACM Conference on Computer Supported Cooperative Work and Social Computing,

1618-1630. https://doi.org/10.1145/2998181.2998314

https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://doi.org/10.1007/s12652-019-01578-7
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd

Hassen, M. B., Turki, M., & Gargouri, F. (2019). A Multi-criteria Evaluation Approach for

Selecting a Sensitive Business Process Modeling Language for Knowledge

Management. J. Data Semant., 8(3), 157-202. https://doi.org/10.1007/s13740-019-

00103-5

Hawryszkiewycz, I. T. (2005). A Metamodel for Modeling Collaborative Systems. Journal of

Computer Information Systems, 45(3), 63-72.

https://doi.org/10.1080/08874417.2005.11645844

Hawryszkiewycz, I. T. (2009). Modeling Complex Adaptive Systems. En J. Yang, A. Ginige, H.

C. Mayr, & R.-D. Kutsche (Eds.), Information Systems: Modeling, Development, and

Integration (pp. 458-468). Springer Berlin Heidelberg.

Herskovic, V., Ochoa, S. F., & Pino, J. A. (2019). Identifying Groupware Requirements in

People-Driven Mobile Collaborative Processes. J. Univers. Comput. Sci., 25(8), 988-

1017.

McCarthy, J. (1993). Notes on Formalizing Context. Proceedings of the 13th International Joint

Conference on Artificial Intelligence - Volume 1, 555-560.

Monares, A., Ochoa, S. F., Herskovic, V., Santos, R. M., & Pino, J. A. (2014). Modeling

interactions in human-centric wireless sensor networks. En J.-L. Hou, A. J. C. Trappey,

C.-W. Wu, K.-H. Chang, C.-S. Liao, W. Shen, J.-P. A. Barthès, & J. Luo (Eds.),

Proceedings of the IEEE 18th Int. Conf. on Computer Supported Cooperative Work in

Design, CSCWD 2014, Hsinchu, Taiwan, May 21-23, 2014 (pp. 661-666). IEEE.

https://doi.org/10.1109/CSCWD.2014.6846923.

Moody, D. (2009). The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual

Notations in Software Engineering. IEEE Transactions on Software Engineering, 35(6).

756-779. https://doi.org/10.1109/TSE.2009.67

OMG. (2016). Case Management Model and Notation Specification. URL:

https://www.omg.org/spec/CMMN. Last visit: Nov 2021.

https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.zotero.org/google-docs/?b9YoSd
https://www.omg.org/spec/CMMN

