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In security-typed programming languages, types statically enforce noninterference between potentially
conspiring values, such as the arguments and results of functions. But to adopt static security types, like
other advanced type disciplines, programmers face a steep wholesale transition, often forcing them to refactor
working code just to satisfy their type checker. To provide a gentler path to security typing that supports
safe and stylish but hard-to-verify programming idioms, researchers have designed languages that blend
static and dynamic checking of security types. Unfortunately most of the resulting languages only support
static, type-based reasoning about noninterference if a program is entirely statically secured. This limitation
substantially weakens the benefits that dynamic enforcement brings to static security typing. Additionally,
current proposals are focused on languages with explicit casts, and therefore do not fulfill the vision of
gradual typing, according to which the boundaries between static and dynamic checking only arise from the
(im)precision of type annotations, and are transparently mediated by implicit checks.

In this technical report we present the complete definitions and proofs of GSLgef, a gradual security-typed
higher-order language with references. As a gradual language, GSLgef supports the range of static-to-dynamic
security checking exclusively driven by type annotations, without resorting to explicit casts. Additionally,
GSLpef lets programmers use types to reason statically about termination-insensitive noninterference in all
programs, even those that enforce security dynamically. We prove that GSLges satisfies all but one of Siek et
al’s criteria for gradually-typed languages, which ensure that programs can seamlessly transition between
simple typing and security typing. A notable exception regards the dynamic gradual guarantee, which some
specific programs must violate if they are to satisfy noninterference; it remains an open question whether
such a language could fully satisfy the dynamic gradual guarantee. To realize this design, we were led to draw
a sharp distinction between syntactic type safety and semantic type soundness, each of which constrains the
design of the gradual language.

CCS Concepts: « Security and privacy — Information flow control; - Theory of computation — Type
structures; Program semantics;

Additional Key Words and Phrases: Noninterference, language-based security, gradual typing
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S == Booly | sigs | Ref, S| Unity  (types)
b == true| false (Booleans)
rou= b|Afx:S.t|unit]o (raw values)
v ou= 1y (values)
t == ovl|tt|tet]|iftthentelset

refSt |1t | =t [t S| prot,(t) (terms)
® = A|V (operations)

Fig. 1. SSLpef: Syntax

1 OVERVIEW

In this document we present the complete definitions and proofs of the static language SSLgef, the
gradual language GSLgef, and the evidence augmented language GSL;. Section 2 presents the full
definitions for the static and gradual languages. Section 3 presents the proof of type safety and
noninterference for SSLges. Section 4 presents the proofs of soundness and optimality of the Galois
connection, and the proof of the static gradual guarantee. Section 5 presents the formalization
of evidences for GSLges: structure of evidence along with it corresponding Galois connection,
initial evidence, evolving evidence (consistent transitivity), algorithmic definitions and their proofs.
Section 6 present dynamic properties of GSLy,. The presentation and proofs follows an intrinsic
notation rather than evidence augmented notation, as it is more explicit (although more verbose).
We present the proofs of type safety and noninterference, along the proof of the dynamic gradual
guarantee for a similar gradual language that does not contain the extra dynamic check added in
the runtime semantics.

2 FULL DEFINITIONS FOR THE STATIC AND GRADUAL LANGUAGES

In this section we present the full definition of SSLgef (sections 2.1 and 2.2) and the full definition of
GSLgef (sections 2.4 and 2.6). Section 2.8 presents the full definitions of noninterference presented
in the paper.

2.1 SSLges: Static semantics

In this section we present the full definition of the static semantics of SSLgef. Figure 1 presents the
syntax of SSLges. Figure 2 presents the complete static semantics of SSLgef, where the join between
types and labels is defined as follows

Bool, v £’ = Bool(sy¢)

le , e
(Sl—>552) Y 0 = Sl_)([’\/t’/)SZ
Ref, Sy ¢’ = Refpyeny S

Figure 3 presents the join and meet type functions.

Definition 2.1 (Valid Type Sets).
valid({S;1})  wvalid({ Si2 }) valid({ S; })
N valid({ Refr, ;)

valid({ Boolr, ) valid({ S5 1,512 )

valid({ Unity, })

2.2 SSLges: Dynamic semantics

In this section we present in Figure 4 the full definition of the dynamic semantics of SSLgef.
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x:5€Tl
SX) —/————————— Sb S
O St r xS OO 520+ by < Bool, O S 7 unit, : Unity
. Ix:S8;;%¢ +t:S
) 0:S€eX 1) 1 2

[;%;¢c +o0p:Refp S o v
;360 F (A% x: Sl.t)g 1 S1—¢S2

;3 8evlrt:S I3 6c +t1 2 Booly,  T335€c + t2 2 Boolg,
(Sprot) (S®)
;%6 - protg(t) :Sv !l 50 -t Dty : BOO](&V&)

’

Tl Ft:S11—¢S12 LiSilekta: Sy Sy <:Sia levl<l

S
(Sapp) ;36 -t by : S1ov !
I;%0rt:S S <:S
I[3¢6:Ft:Booly T550cvert:S; £ < label(S)
(Sif) - — (Sref)
I3 € kif t then ty else t2 : (S1V S2) v T;3;6c FrefSt:Ref, S

[;3;6c -t:Refp S

Sderef
(Sderel) S T F 1t Syl

I;3;6c F t1 : Refp 51 ;36012 : 59 Sy <: 851 lc v € < label(Sy)

S
(Sasgn) T;3;€c v t1 =ty : Unit

1) 36 +t:851  S1<:85

h [0 15y : 5y
S<s s SN S
: Bool, <: Booly Unit, <: Unity
S <:Sp Sp<iS) i<t )<t <t
4 Refy S <: Refyr S

& ,_2 ’
51—>[152 <: Sl_>f;52

Fig. 2. SSLRef: Static Semantics

2.3 SSLges: Noninterference definitions

In this section we present definitions and properties of noninterference for SSLgef. Figure 5 presents
the full definition of step-indexed logical relations. The proofs can be found in Appendix 3.4.

Definition 2.2. Let p be a substitution, I' and ¥ a type substitutions. We say that substitu-
tion p satisfy environment I' and X, written p |= T;Z, if and only if dom(p) = T and Vx €
dom(T), V€., T;3; €. + p(x) : S’, where §” <: I'(x).

Definition 2.3 (Related substitutions). Tuples ({1, p1, 1) and

({2, p2, l12) are related on k steps, notation I'; X + ({1, p1, 1) z’go (loy po, o), if pi ET 2,2 F 1 z’go
[z and

Vx € T.3 + (€1, p1(x), 1) %IEO (Ca, p2(x), p2) : T'(x)
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vV : TYype X TYyPE — TYPE
Boolg v Boolyr = Bool(py ¢
4

{')C c c /‘
(S511—£512) V (S21— ¢ S22) = (S11 2 S21) — (v er) (S12 V S22)
Refy S$/ Refyr S = Ref(gvg/) S
SV S undefined otherwise

A : Type X TypE — TYPE

Booly 2 Boolyr = Bool(gasry

[c €c [Cvflc
(S11—¢512) 2 (S21— ¢ S22) = (S11V S21) — (£aer) (S12 2 S22)
Refy S Refyr S = Ref(pppr) S
S A'S undefined otherwise

Fig. 3. SSLRef: Join and meet type functions

e
t|py — t|p|Notion of Reduction

fc ’ 'Kc
bie, ®bag, | 1 —> (b1 [®] b2)eryey) | 1 xS0, v | = prote([v/x]t) |
. le . e
if trueg then ty else t2 | g — prot,(t1) | p if falsey then ty else ta | g — prot,(t2) | 4
Ce S le
prot,(v) g — vv{l|p ref> v | p — oy | plo vy ] where o ¢ dom(u)
lc e
log | p — vv | puwhere pu(o) =v o0p=v | g — unity |ulo vyl v{]

le
vuS|p — vylabel(S) | p

le .
t| py+—t|p|Reduction

le le
t1 |y — t2 | p2 t | pr >t | p2
(R—) Z (Rf) ;
tr = t2 | 2 flul | pr— flt2] | po

t | vty |
1 1 > 12 2
(Rprot) K o

£
prote(ty) | g1 +— proty(t2) | p2

Fig. 4. SSLRef: Label Tracking Dynamic Semantics

Definition 2.4 (Semantic Security Typing).

;%6 Ft:S & V{, € LABEL, k > 0, p1, p» € SUBST and 11, yt; € STORE
such that X + p; and I'; 3 + (e, p1, p1) z’go (Ce, P2, 12) , we have

2k {Ee, p1(2), 1) z’zo (le, pa(t), p2) : C(S)

PROPOSITION 2.5 (SECURITY TYPE SOUNDNESS). IfI;%;6. Ft:S] = VS,S; <: S, T34, =t:S
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2k (51,01,/11) ZIEO (ba,v2,12) 1 S &= {1 e, OOANZF %]EO pa ANE; L ko Slf,S,f <: S,

A (Ongo(fi,S) — ObSREIi:?D(fl,vl’llL{vaZaHZ))

obsReIi’? (1,01, 11, €2, 02, p12) = (rval(vy) = rval(vy)) if S € {Booly, Unity, Ref, s’}

o .
obsRely 9% (61, w1, 1, g, 03, 1) &= Vj S KNEC LB k(0,0 1)) &) (o, v, p13) < S,

S k(01 0], ) & (G, vs 5, ) CS2 Y 9)

Sk (bt ) X (Costa i) C(S) & lmg, NSk X5 iy ASi ikt 8], S <: S Vj <k
[i ; —j
(il =57t g = Skl ~g 7 pga

(irred(t]) = ' F(Cr. 1], ) %3 (oo th113) )

Sk Xy M2 = I rp AV, =g, L2, < k,Yo € dom(u1) N dom(pz)
XF <€1’/l1 (0)’ [11) zjgo <€2,H2(0)’ ,u2> : 2(0)
01 e, 2 — ObS(i0 i) v —|0ng0 (&)
o —pz = dom(py) € dom(pz)
obsg (£,S) &=  obsg, (£) Aobsg, (label(S))
obsy (f) &= (<4,

Fig. 5. Security logical relations
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J>9c-9r € GLABEL, U € GTypE, x € VAR, b€ Boor, & € BoorLOp
leLoc, te€ GTERM, r € RAWVALUE v € VALUE

fin fin
I' e VAR — GTyre, X € Loc — GTYPE

U == Booly | Ug—c>gU | Refy U | Unit; (gradual types)
g u= {17 (gradual labels)
b == true| false (Booleans)
r u= b|Aex:U.t|unit]o (base values)
von= o1 (values)
t == wovltt|tt|iftthentelset (terms)

refU t | 1t | t:=t | protq(t)
® = AV ) (operations)

Fig. 6. GSLRef: Syntax

2.4 GSLRges: Static semantics

In this section we present the syntax and static semantics of GSLgef. The syntax of GSLgef is given
in Figure 6 and is otherwise identical to that of SSLgef. Figure 7 presents the type system of GSLgef.
Each typing rule is derived from a corresponding SSLgef rule (Figure 2) by lifting labels, types,
predicates, and functions to their gradual counterparts. We also present some additional definitions
needed in gradualizing SSLges which are not included in the paper. Finally we present some example
typing derivations in Figure 9.

2.4.1 Additional Definitions.

Definition 2.6 (Type Concretization). ys : GTYPE — P (TYPE)

[ r(9)
ys(Boolg) = {Bool | £ € y(g) } ys(Ui—4U2) = ys(U1) — y(g)¥s (U2)
ys(Unity) = {Unitg | £ € y(g)} ys(Refy U) = {Refy S| £ € y(9).S € ys(U) }
Type concretization induces notions of precision and abstraction.
Definition 2.7 (Type Precision). U; E Us, if and only if ys(Up) C ys(U2).
Definition 2.8 (Type Abstraction). as : P(TypE) — GTYPE
as({Boolg, }) = BOOla({Z_}) as({ Unitg, }) = Unita({fi})
I —a({ey _ _ _

as({Sit—¢,Si2}) =as({Si1}) — a7 s Siz}) as({Refg, Si}) = Ref 177y @s(Si D

o~

as(S) is undefined otherwise

PROPOSITION 2.9 (@s 1S SOUND AND OPTIMAL). Assuming S valid:
()5 CysesB) (i) IfS C ys(U) then as(S) C U.

Definition 2.10 (Gradual label meet).
giRge=a({li Al | (6, 6) € y(g1) X y(92) })-
Algorithmically:

LA?=?AL=1 gK7=7Xg=71fg¢J_ €1X€2=€1/\€2
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IZgrt:U

x:Uel

UX)——————"""—""— Ub U
(U I%9cFx:U (D) T2 90k bg : Boolg (v ;%5 ge + unity @ Unity
. I,x:Up;Z 9l vt U
(Uo) o:U e W 125 9¢ 2
I3 9c Fog: Refy U , ge
’ ’ 390 F (Aex s Urt)g : Uy— U
[;%gcvgrt:U I;3;gc + 1 : Booly, T3 25 gc + to : Booly,
(Uprot) ge Vg - Ue) ¢ o ¢ 92
;290 + protg(t) :Uvyg [Zgert1 @t Bool(qquz)
A
390 Ft: Ull_)gUIZ
F;Z;gc'_tz/ﬂ/ I;%;9c +t: Booly
U, s U Y gc < gl ;3 9:vgFt:U [;39cvgFty: U
(Uapp) 2 11 gV Yc = 9 wif) Je v? 1:U1 e vg~ 2 i 2
IiXgcrtita:Uiavyg I3 9. Fif tthentyelsety: (U V) Vg
I;3g9cFt:Up F;Z;chilU'
U s U U sU < label(U I3 9c -t :Refy U
U=) 1> 22 (Uref) Je ©) (Uderef) < g
IiXgc bt Un: Up F;Z;gcl—rert:RefJ_U I%g9.F1t:Uvyg
3590 -t Refq Up 390 -t : U Uy s Uy gV gc < label(Uy)
(Uasgn) -

I'; 35 ge + t1:=tz : Unit .

Fig. 7. GSLges: Static Semantics

UVUURU

V : TYPE X TYPE — TYPE

Bool, v Boolgr = BOO](ng/) N
e ~ A 9eAge
(U11—gUt2) ¥ (U1 — g Uza) = (U1 A Uz1) —

.. ’ _ - ’
Ref, U Refy U’ = REf(g\(g') unu

U ; U undefined otherwise

(g:/'g/) (UIZ ; UZZ)

X': Type X TypE — TYPE
N , = ~

Bool, /A Bool, Bool(g/\g,) -

9e x ge ~  9cVge x

(U11—4U2) N (U21— 9 Us2) = (U1 ¥ Ua1) — (qxq,)(Ulz NUz2)

A o N , A
Ref, U /A Refy U Ref(gAg,) unu
U AU undefined otherwise

Fig. 8. GSLRges: consistent join and consistent meet

Definition 2.11 (Gradual label join). g1v g2 = a({ €1 v €a | (€1,€2) € y(g1) X y(g2) })
Algorithmically:

T://?:?://T:T g/\\/'?Z?,\\/'gZ’)lfg:ﬁT 61://52251\/52
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Definition 2.12 (Label Meet). g1 T g2 = a(y(g1) Ny(g2)).

Algorithmically:
gng=yg gn?=7rng=g
Definition 2.13 (Type Meet). Uy MU, = as(ys(Ur) Nys(Uz)).
Algorithmically:
gng’ gng’ gng’ UiNG,
Bool, M Booly Unity M Unity Ref, U M Refy Uz

LNty nU, gifgl g2Mg;

g2 , 92 ,
Up—g, U2 1 Ul_)g{Uz

Also, we introduce a function label, which yields the security label of a given type:

label : GTYPE — LABEL

label(Booly) = g label(Unit,) = g label(U; —4 Up) = g label(Ref, U) = g

Definition 2.14 (Type Precision (inductive definition)).

91 C g 91 C 92 UinCU;n UieCUz 91592  9c1 E ge2
Bool,, C Bool Unit,, C Unit Je1 92
o ” o 7 Uni—g,Ur2 € Ua1—g,Uzz

91E g2 U CU,
Ref,, U C Refy, Uz

Definition 2.15 (Consistent label ordering (inductive definition)).

6 <&
?<yg g<? 6L <t
Definition 2.16 (Consistent subtyping (inductive definition)).
9<9’ g<y¢’ 939 UisU U st
Boolg < Boolgf Unit; < Unity Refg Ui < Refgf U,

UsUh UhsU g1<g] 95<g

92 , 92 ,
U= U2 S Uj— 5 Us

2.5 GSLg,: Static semantics

In this section we present the full definition of the static semantics of GSLg,.

Definition 2.17 (Interval). An interval is a bounded unknown label [/, {,] where ¢; is the upper
bound and ¢, is the lower bound.
1 € LABEL?
1 u= [{,¢] (interval)
Definition 2.18 (Evidence for labels).
€ == (1,1)
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wo Fpub : Intp ... b priv:Int;

;L Fpub < priv : Inty 5?2 F 1 Int L2 s Int

L pub < Inty, priv : Inty; 5 L+ if pub < priv then 1 else 2| : Int;
Int? < Intp

L pub : Inty, priv : Inty; - Lk (if pub < priv then 1| else 21) :: Inty : Int,.

T
Lpub :Inty; L (AT priv : Inty.(if pub < priv then 1| else 2) = Int) : Intp—> Int.

L e (ATpub : Int (AT priv : Inty.(if pub < priv then 1| else 2) = Int. )y :

T T
Int,—Int,—Int

D D
. T ] T
oL Fmix 1 : Intp— Int oL Fmix 1 : Intp— Int
. LS50 Int Int. < Int? 5.3 LF 5y Inty Inty < Int?
5 Lk (mix 10) 5L : Int 5 LF (mix 10) 54 : Int
D D
P T P T
5oL Fmix” 1L : Intg—Int, oL Fmix” 10 Intg—Int
5 L5 Int Int. < Inty 5 LFS5H :Inty Inty < Inty
L F (mix” 10) 50 ¢ Int L F (mix” 1) 54 @ Int,

Fig. 9. GSLgef: Example typing derivations

t o= vt @, ct| et ®et|if et then et else et | reffj et | Vet | et =, et | protéqf'g(z"t) | et
rou= b|(Mx.t) | unit]o ‘

u == rylx

v = ulcu

Fig. 10. GSLg,: Syntax

Definition 2.19 (Type Evidence). An evidence type is a gradual type labeled with an interval:

E € GETYPE, 1€ LABEL?
E == Bool, | E—I>,E | Ref, E | Unit, (type evidences)

Definition 2.20 (Evidence for types).
¢ :=(E,E)

We present the syntax of GSLy,¢ in Figure 10 and the static semantics in Figure 11.

2.6 GSLg,: Dynamic semantics

In this section we present the full definition of the dynamic semantics of GSLy.
We extend the syntax of GSLy, with frames defined as follows:

f == hl]
h

t= O@et|levdDn|0@,et|ev@,O0|cO|ifOthenetelseet|!n]|O:=, etIev::g-DIref(‘UD
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x:UeTl
X)———— Ib I
(Ix) I3 e9cFx:U (Ib) I;%;egc + by : Booly (1) ;%5 e9¢ + unity @ Unity

0:UEeX w Tox:Uplieg'vt:Up o/ =92(9")
I;%;6gc b og : Refg U

) ;
, g
[3egc b (A x: Urt)y : Uy—4Us

_ 2 egert U
F;Z;é‘/gél-t:U' arU U aorg'<g kU Uy

(Iprot) — (Ie)
P T:2e9c + prot‘l,q,z"gé(e'lt) :Uvyg I 3egc Feit: U

q -,
2 ege Fti 2 U s kU S U11—>gU12 e Uy < Upg &k gé Y9 =< g'
[;%56gc F ety @, e2t2: U2 v g

(Tapp)

[;369c F 11 : U 1 + U < Booly e/gl = (e vV ilbl(1))(ge V g)
[;36/givtp:Up eab Up s UpGUs  IiZseglrts:Us  e3kUs UV Us

T;3;e9c b if ety then et else e3t3 : (U gUg) Qg

(1if)

[%e9c -t : U e FUp < Boolg, T;3egcFt: U’

T;S6egcFta: Uy 5k U < Bool arU <sU ek gl < label(U
1) < 9 (Iref) — 2 - g < label(U)

[;%6gc k1t @ ety BOOIgﬁgz T3 egc F reff{ e1t:Ref L U

[;X;egc b t: U /U < Refy U

(Ideref) —
;3 69¢F1e't:Uvg

[;3;egc + b1 : Refy U/ ¢1 F Refy Ul < Refy Uy
I'3569c g i Us o Uy s Uy &k gé v g < label(Uy)

(Tassgn) -
33569 ety i=¢, e2tp : Unity

Every type rule has the extra judgment ¢ F g. < Jo-

Fig. 11. GSLp,: Static Semantics

We present the complete dynamic semantics in Figure 12, and the evaluation frames and reduction
in Figure 13. Auxiliary functions for evidence for labels is presented in Figure 14. Auxiliary functions
for evidence for types is shown in Figure 15, and the inversion functions for evidence in Figure 16.

2.7 GSLges: Translation to GSLg,,

In this section we present the translation from terms of GSLgef into terms of GSL;zef in Figure 17.
The initial evidence function for consistent label ordering is presented in Figure 18. The initial
evidence function for consistent subtyping is presented in Figure 19 using the following definition
of operation pattern:
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(r1)  ei(b)g, ® e2(ba)g, | 1 — (1 ve)(by [®] b2), <~ | g e
e 7 1 (91v92) i :Cx (CU{error})

(r2) prot, , coga(csu) [ — (55 V o)y g1) |

(r3) c1 (A x : Ut)y @, eou | p i {pmtilbl(m)gé\lgl(lc"d(“l)([“z”/x]t)) L p

error if ¢] or ¢/ are not defined
where:
) = (e Y ilbl(e1)) o= &3 0% ilat(er)
&) = ey 0~ idom(ey)
A ~
91=1(9¢c v 9)

Q
S

rotir. . e g’ (eot if b = true
(r4) if e1bg, thentzelsets |y — {p bllengn (‘,Z,(k 21w

protipi(. yg, ¢ 9 (e3t3) | p if b = false
where:

¢ = eV ilbl(er)
g’ =Jc 791

£9c — e/ v
(r5) refg cul p _‘7> {OJ_ | plo &’ (uv gc)]

error if (¢ 0= ) is not defined
where:
o & dom(u)

¢ =61 Y (e 0% &)

(r6) lejog | p — protip(.,)g¢ 9" (iref (¢1)v)
where:

plo)=v

¢ = evilbl(er)

9’ =9cvg

(77) 104 1=, EoU | “_90) uniti | ,U[O [N ;./(u'\‘/'(gc ’\\/ig))]
10g =cy 2U | error  if ¢/ is not defined, or ¢ [ <] ilbl(-"")does not hold
where:
,U(O) =:"u
cel o iref(g-l))q(({,; ilbl(e1)) o= £3 o= ilbl(iref (¢1)))
("‘2 o< é‘l)u
e1(e2u) — < , — . .: EvTERM X (EVTERM U { error })
error if not defined

Fig. 12. GSLg,: Dynamic semantics

Definition 2.21 (Operation pattern).

PT € GPaTTERN, P! € LPATTERN

PT == _ | PT op” PT (pattern on types)
op?T == VAN (operations on types)
Pt == _ | Plopf P* (pattern on labels)
(2

opt u= L (operations on labels)

<
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£9c
tlp —t" |y

tlp;&)r r € CU {error}
R—) R Rf) R
tlp—r flellp — flIe1p
tlp n—q> vy v —< c'u
(Rprot) (Rh) oe
! hlev] | g+ hle'u] | p

“Jc
prot, o ¢'ge(et) | p +— prot, o ¢'gl(ct) | p

“Jc
t|p +— error

v —<. u
(Rproth) - (Rferr) -
) “gc ;o1 £Jc
prot, g ¢ gelev) | p +— prot, , ¢ ge(e'u) | p flt] | @ + error
Co
£U — <. error t|p > error
(Rherr) 5 (Rproterr) 7
h(ev] | p —> error prot, o ¢'gc(et) | p —> error
£V — <. error
(Rprotherr) 5
prot, , ¢'ge(cv) | p > error
Fig. 13. GSLg, Evaluation frames and reduction
vl <l A
S ,1 2, - S <11.12>I_I<l{.zﬂ>:<11I‘Iz;.lzl‘ll./)
[[1.[2]“[[1.[2]2[[1\/[1.[2/\(2] - -
<11.13>'\7<1{.1;> =(n VI;.IZ \/1;) <11.12>X<z;.1;> ={n Az{.lg A 12)
<ty <ty (<Y
A<([{|./2},[/1./_;],[/1’./_;/]) = ([, Lo A ALY ] [ v € v £, 65T
{3 < 144
(t1y121) 0= (122,13) = AN (11,191 M122,13) i
<[[]~ [2]- [[3- [JfD L<] <[[|- [zJ- [[3- [_d)

Fig. 14. GSLp,¢ Auxiliary functions for the dynamic semantics (Labels)

2.8 Noninterference definitions
The formal definitions of related values and related computations are presented in Figures 20 and 21

respectively.

Definition 2.22 (Related substitutions). Tuples (g1, p1, 1) and (g, p2, i2) are related on k steps
under I', 3 and g., notation I'; 3; g + (g1, p1, 1) zé‘o (92, p2, 2), if pi ET, 2 kg zlgo U and

Vx € dom(T).3; gc b (g1, p1(x), 1) ~5. (Gas p2(x), p1z) : T(x)

Definition 2.23 (Semantic Security Typing).
I%,gFt:U & V{, € LaBEL, k > 0, p1, po € SUBST and p, i € STORE, V9., J = 9,
£k g < ge suchthat 3 + p; and T'; %5 9¢ F (g, p1, 1) z’éjo (G, p2s 1i2)
we haveS; g + (g, p1(t), pn) =5 (g, pa(t), p2) : C(U)

PROPOSITION 2.24 (SECURITY TYPE SOUNDNEsS). [;X;grt:U = [;5;g=t:U
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Bool, M Bool,» = Bool,,/ Ref, E; M Ref, E; = Ref,q E1 M E>
1 4 1,01
(E11—>1, E12) M (Ea1—> E22) = (Evi M Ez1) =,y (E12 1 Ea) £ 1 E’ undefined otherwise
~ 12 ~ 12
BOO[,l Yip = BOOI(thz) Ei—, Ervis = E1—>(llf\?l%)E2 Ref“ EXiy = Ref(l Vlz)

~ 12 ~ 12
BOO[Il NP BOOI(nAzz) Ei—, B A3 = E1—>(11X13)E2 Ref EXiy = Ref( /\lz)
(E1,E2) ¥ (11.12) = (E1 Y, E2 Y 12) (E1, E2) K (11,12) = (E1 K11, Eg K12)
Y e .
Bool,, v Bool,, = BOOI(nvz) E1—>11E2 VE1—>/E2 =E AE]— v )E2 v E)
~ , _ , ~
Ref,, [y v Ref, £} = Ref(nv:i) EynE; Bool,, A Bool,, = Bool(llAb)
~ -~ ’_ . ’
By, By KE|—» ,EZ =B VE ( %oy E2 KE} Ref,, £ A Ref, £} = Ref 5 Fi M|
(E1,E2) YV (E{,E}) =(E1 VE{,E2 Y E) (E1,E2) K(E{,E}) = (E1 KE{,E2 KEj)

AS(11,12,13) = (G
A< (Bool, , Bool,,, Bool,,) = (Bool,i, Booll;)

ASH(Esy, Eor, Evn) = (ES B ASH(Eg, oo, Esn) = (BT, EL)
AS(11,12,13) = (1], 14) A (13,112, 111) = (s 111)

/ ’

. 111 112 113 I3
<: — ’ ’ 7
A< (E11—4, E12, E21 =1, E22, E31—>1, Esp) = (E},— v Elg: B3y E3p)

AN, 10,13) = (f,15)  Ej=E;ME; E}=E;MNEs
A<:(Ref,1 Eq, Ref,2 E,, Ref,3 E3) = <Ref,1 E;, Ref"l:/3 Eé)

(E1,E21) 0= (Eo, E3y = A< (E1, Eoq M Egp, E3)

Fig. 15. GSL‘;ef: Auxiliary functions for the dynamic semantics (Types)

Proor. Proof in Appendix 6. O
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ilbl((Bool,,, Bool,,)) = (11,12)
ilbl((Unit,,, Unit,,)) = (11,12)
llbl((Ref,] Ul, Ref,z Uz>) = <I,1,12>

1
ilbI((E1—,, Ex. E{—> E5)) = (11.1])

iref ((Ref,, Ey.Ref,, Ey)) = (Eq. Es)
iref((E1, E2)) = undefined otherwise

, Lo v -
idom((Ey—>,, Ea, E{—> E})) = (E{, E1)
idom((E1, E2)) = undefined otherwise

1 l;
icod((E1—>1, Ea, E{— E})) = (Ea, E})
icod({E1, E»)) = undefined otherwise

Fig. 16. GSLg, Inversion functions for evidence

15
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T390t~ t' U
(e D =0 (Tb)
x I3%gckx~>x:U I5359¢c + by ~ by : Booly
;39 rt~t Uy
(Tu) . . . (TA)
290+ unity ~> unity : Unit, , , rd
‘ 259c F (AW x:Upt)g ~ (AW x:Upt')y : Uy— 4l
[3%59c F 11~ t] : Boolg,  T3X;9c F ta ~ ¢ : Boolg,
) 1= 9% [Booly, ] 0 =9° [Boolg,]
(Te ; S
I3gcFt1 ®tr ~ e1t] @ oty Bom{h?{)z
7
T3359c F 11~ 1] s Up—4Upp Ti359c Fh ~ 1) : Up
g —
T ) £ = g() HU]1—>gU12]] £y = q[[Uz < UH]] £3 = (I[[gc Vg < g’]]
a ~
PP [iE9c Ftit~ a1t} @, a2ty : Uz v g
I;35gcFtp~ 1] :Booly  gbi=gcvg TiSigivta~oth:Us TiSigiviz~t]:Us
L 9°[Bool,] ey = [Uy <: Uy v Us] ey = [Us <: Uy v Us]
1 ~ ~
T;3;gc v if 1 then ty else t3 ~> if ¢1t1 then e3t2 else e3t3 : (U2 v U3) v g
[;2;9c F t1 ~ t] : Refy, Uy [;35gc kg~ 8 : Un
(Tessgm) = IO[Refy U] 2 =9[Uz s U] ¢35 =9[ge v g < label(Uy)]
assgn
& I3 gc F tyi=ty ~ eltl' = é'zté : Unit
T;Sige bt~ t! U’ [i3gc bt~ t':Refy U
e =9[U" s U] 2 = I[ge < label(U)] ¢ = 99 [Ref, U]
(Tref) (Tderef) - / —
;390 F refU t ~ reff{ et :Ref L U IiZgc kit~ let’ :Uvyg
T4 [;S5gckt~>t' U =3[0 s U

[;3,9cFt Uy~ et’ : Uy

where °[g] = 9[g < g] and I°[U] = I[U < U]

Fig. 17. GSLRges: translation to GSL};ef terms
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bounds(?) =[1,T]

bounds(€) = [(.(]
bounds(x1 v x2) = bounds(x1) v bounds(xz)
bounds(x1 A x2) = bounds(x1) A bounds(xy)

bounds(x; Mx2) = bounds(x1) N bounds(xz)
bounds(Fy(x7) v F2(xi)) = bounds(F1(x7)) v bounds(F2(x7))
bounds(F; (x;) A Fo(x;)) = bounds(F1(x;)) A bounds(F2 (7))
bounds(F1 (x7) M F2(x;)) = bounds(Fy (x7)) N bounds(Fa(£;))

bounds(F1(g;7)) = [(1.(2]  bounds(F2(gj)) = [(].0)]

J(F1(915--9n) < B2(gna1s - gntm)) = (L1 Lo ML) [ Lo v £.0)])
where F; : GLABEL” — GLABEL and F2 : GLABEL™ — GLABEL.

IO(F(g1, - gn)) = I (F(g1, s gn) < F(g1, - Gn))

Fig. 18. GSL&ef: Initial evidence for gradual labels

17
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fP() = _
LiftP(P[ v P;) = LiftP(P]) v liftP(P})
liftp(Pl A P]) = liftP(PL) A liftP(P))
lifgp(PI Pl = liftp(P]) N lifiP(P])
invert(_) =
invert(PlT Y, PZT )
invert(PlT A PZT )
invert(PlT mn PZT )
tomeet(_) =
tomeet(PlT Vi PZT)
tomeet(PlT A PZT)
tomeet(PlT m PZT)

;nvert(PlT ) A invert(PZT )
invert(PlT )V invert(PzT )
invert(PlT )n invert(PzT )

;omeet(PlT) m tomeet(PzT)
tomeet(PlT) m tomeet(PzT)
tomeet(PlT) m tomeet(PzT)

I[UAPG) (@) < WftP(Go)G)] = (1.12)

9[G1(Booly,) < Gg(Boolgj)] = (Bool,,, Bool,,)

I linvert(Go)(Tyn) < invert(G)(Tm] = (4, E,) I[G1(T2) <: GaTia)] = (v o)
ILAPG) () < BRPGTD)] = (11.112)
9 [liftP(invert(G2))(G) <: ifeP(invert(Gy) (T2)] = (12 121)

9i2 9j2 11 1
I[G1(Uit—g,,Uiz) <: G2(Uj1—g;,Uj2)] = (E11—1,, E12, Eo1 =1, Eo)

I[P (@) <2 HAPG)@)] = (1. 1)
Y[ tomeet(G1)(U;) <: tomeet(G2)(U))] = (E1.E2)
Y[ tomeet(Gz)(Uj) <: tomeet(G1)(U;)] = (E,.E)

9[G1(Refy, Uy) <: Go(Refy, Up)] = (Ref,, Ey ME[.Ref,, E;ME))
where Gy : GLABEL" — GLABEL and G2 : GLABEL™ — GLABEL, and Gy (x1, ..., X,) = PlT(xl, s Xn),

Go(x1, .0y Xn) = PzT(xl, e X))

IO (F(Us, s Un)) = I[F(Us, .. Un) <: F(Us, .., Up)]

Fig. 19. GSLEef: Initial evidence for gradual types
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Zigc v (g1, 01, 1) z’}o (G2,v2,p2) : U & gc Hg1~¢, G2 AT+ zlgo Hz A 535 4i kvt UA

(obsValy (v;) v ~obsVal}l (v:)) A ((obsValf/ (i) A obsEVY' (1)) = obsReli:?Z’U(gl,vl, fit, G2, 02, p12) )

2,9¢U /& S . .
obsReIk"?,o (g1,v1, 1, G2, v2, 2) & rval(v1) = rval(vy) if U € {Booly, Unity, Ref, U’\
%90, Ui~ U %,
>Jc,Ur 21 U2 N . £
obsReIk’t,z P72 (81, 01, 1, G2, 02, o) &= Vj < kYU’ = Ull_>g§1 Uy, YU/,

Vg, Vg; = ¢/gi, where ¢] F gi < gi, st. §i <¢, i,

932
el FU—g, Uy s U’ ep F U’ S UY, and ¢35 + gl v 941 < g5, We have:
Vo, pf, 22 C B35 ge + (d1,v1 1y) &y (G203 1p) 2 UL, dom(u;) € dom(uj),

35 gc F (g1, (1101 @, 1201), 1) k"éo (g2, (c1102 @,.,, £1203), piz) : C(U3 ¥ g31)

Fig. 20. Related values

35 gc F{g1, t1, 1) z’go (g2, t2, p12) : C(U) &= gc +d1 =¢, G2 A2 ki z’go H2 AYG, st §i <¢, g; and
gi
St UM<k (4| vt ] = 32,3 C3

k—j . . A k—j ,
PUENTS zt,oj uy A ((irred(t]) A irred(ty)) = 3'59¢ F (G1,t1, 41) zfoj (G2, tg, H5) - U))

Fig. 21. Related computations
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3 STATIC SECURITY TYPING WITH REFERENCES

In this section we present the proof of type preservation for SSLges in Sec. 3.1, and the definitions
and proof of noninterference for SSLgef in Sec. 3.2.

3.1 SSLges: Static type safety
In this section we present the proof of type safety for SSLgef.

Definition 3.1 (Well typeness of the store). A store y is said to be well typed with respect to a
typing context I and a store typing X, written I'; ¥ + p, if dom(p) = dom(X) and Yo € dom(u),
;3L Fpuo):Sand S <: X(o).

LEmMma 3.2. IfT; 350 vt : S thenVE, < £, T35 €L F t: S.

Proor. By induction on the derivation of I'; 3; £,  t : S. Noticing that none of the inferred types
of the type rules depend on ¢..

Case (Sx, Sb, Su, Sl). Trivial because neither the premises and the infered type depend on the
security effect.

Case (S®). Then t = byy, ® byp, and

(Sb)

I;3;6c + by, : Boolg,

I3 + bag, : Boolg,

;30 + bip, ® bay, : BOOI((IV[Z)

Suppose £, such that £/ < ¢, then by induction hypotheses on the premises:
(Sb)

(Sb)

(Se)

I3 354, + byg, : Booly
I35 €0 F by, BOO'[;
I35, 0, - bip, ® bay, : BOO](giv[E)
where ¢{ = {; and {; = {; and the result holds.

(Sb)

(Se®)

Case (Sprot). Then t = prot,(t) and

;2 6vErt:S
I3, - prot,(t) : Sv €
Suppose ¢/, such that £/ < {.. Considering that £/ v £ < ¢, v ¢, then by induction hypotheses on the
premise:

(Sprot)

56 vErt:S
[;2;0, - prot,(t) : Sv €

(Sprot)
and therefore the result holds.
Case (Sapp). Then t = t; t; and
D,

) ,,
I3 6 bt Sii— ¢Sz

Dy
| ED R PN Lev €< S;<:Sn

[0kt ty: Siav €

(Sapp)
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Suppose £, such that £, < {.. Then by using induction hypotheses on the premisess, considering

SI —5pS), <: S11—S1and Sy <: Sy. As S, <: Sy; and Sy; <: S}, then S <: S{,. Also, by definition
of the join operator €. v ¢’ < €. v € < €/ <!, and then:

D
(G

;30 Ft 2 S — ST,
D,
;30010 S vt <" S <S5,
L300t by STy vl
Where S, v £’ = Si2 v ¢ and the result holds.

(Sapp)

Case (Sif-true). Then t = if trues then t; else t, and

Dy D,
I';3; €. + truep : Booly L;ZibevtErt 0 S
2
;56 vty : S,
I;3;¢. v if trueg then ¢y else ty : (S;V S) v €

(sif)

Suppose £, such that ¢, < €..As €. v £ < {. v {, by induction hypotheses in the premises:
Dy Dy
I;%; €] F truee : Boolg E 0 vErt o S]
Dy
30 vlrt: S
[; 3¢, Fif trueg then ty else ty : (S{V S5) v €
where S = S1, S5 = Sz. Then (5] V' S3) v € = (51 V S2) v € and therefore the result holds.

(Sif)

Case (Sif-false). Analogous to case (if-true).

Case (Sref). Then t = ref® v and
;36 r0v:S S <:S £ <label(S)
;%6 + refS v Ref, S

Suppose £, such that £, < £.. By using induction hypotheses in the premise, considering ¢/ < £ <
label(S):

(Sref)

;E0rv:S  S<:S < label(S)

(Sref) 3
[;3; 0, - ref’ v:Ref, S

and the result holds.

Case (Sderef). Then t = loy and
0:5¢€3
T;2;€. +op:Refp S
I;2;6: Flog:Sv
Suppose £, such that ¢ < ¢, then by using induction hypotheses in the premise:
0:5€X
I3 0. Fop: Refp S
[;3 8. Flog: Syl

(Sh
(Sderef)

(Sh

(Sderef)

where ¢’ = €. and the result holds.
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Case (Sassgn). Then t = op:=v and

0:S€X D
I'; 36, Fog: Refy S ;26 F0v: S,
Sy <: S te v € < label(S)

S
(Sasgn) T;3;6, F og:=v : Unit

Suppose £, such that ¢, < .. Considering that ¢ v < {. v { < label(S), and S; <: S; <: S, then:

0:5€> D
I5, €, Fog: Refp S 30 rv:S)
Sy <: S Cl v € < label(S)

S
(Sasgn) T3 %€, F op:=v : Unit,

but

Unit, <: Unit,
and therefore the result holds.

Case (S::). Thent =v:: Sand
D
;2 0. rv: 5 S <: S
;%6 rv:S:S
Suppose ¢, such that £, < €., then by Lemma 3.4
D
;30 Frv: S S <:S
%6 FvaS:S

(S=2)

and the result holds.
O
LEMMA 3.3 (SUBSTITUTION). IfT,x :S;;2;€, vt :S andT;%;€. + v : S such that S| <: Sy, then
;3 €. + [v/x]t : S’ such that S’ <: S.

Proor. By induction on the derivation of T', x : S1; ;. F t : S. O

LemMA 34. IfT;5 6. rv: S thenVC,, ;5. v : S.
Proor. By induction on the derivation of T'; 2; £, + v : S observing that for values, there is no

premise that depends on £.. O

PROPOSITION 3.5 ( — IS WELL DEFINED). If;¥;¢6. +t:S, 32 F p andV €, such that , < €.,
t
tlp — t' |y then, forsomeX’ 2 %, ;5 ;0. vt :S’, whereS’ <: S and ;3" v+ .
Proor.

Case (S®). Then t = byy, @ byp, and

(Sb)

525 8c + byg, : Boolg,
(Sb)

525 8c + byg, - Boolg,

(S®)
230 b bre, @ bag, : Bool(g,ve,)
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Suppose £, such that ¢, < €., then
bip, ® bae, |
€r

— (b1 [®] b2)eryey | 1
Then

(S®)
Ce b (b1 [®] b2)(,vey) = Boole,yey)

Case (Sprot). Then t = prot,(v) and

2l vlhrou:S
23 e Fproty(v) : Syl

(Sprot)
Suppose £, such that ¢, < £, then

[V
prot,(v) |p — vv{l|p
But by Lemma 3.2, ; %; €. - v : S.

sXileroyl:Svyl
and the result holds.

Case (Sapp). Then t = (Afex : Si1.t)¢ v and

D
Sx SRt Sip

(S4) 7
555l b (Alex 2 S11.t)¢ : S1i—>¢S12
Dy
32l FU Sy bev €<, Sy <:Sn
2l (Af’cx 2 S t)ev: S vl
Suppose ¢, such that £, < £, and

(Sapp)

, tr
(Afex:Sut)ev | p =5 prot,([v/x]t) | p
But as £, v ¢ < {] then by Lemma 3.2, -; 3; €, v { + t : 5{,, where S, <: Sy3.

By Lemma 3.3 and Lemma 3.4, -; 3; €. v € + [v/x]t : S7}, where S7), <: §7, <: S12. Then

Di
52l v Ok [v/x]t : ST,
250 F prot,([v/x]t) : S{ v €
Where S7) v € <: S12 v € and the result holds.

(Sprot)

Case (Sif-true). Then t = if true, then ¢ else t; and
@0 CD1
25 €. + trueg : Booly 2l v Ot 2 S
D,
2 levl 1Ly Sy
25 +if trueg then ty else ty : (S1V S2) v €
Suppose ¢, such that £, < {., then if

(sif)

Kr
if true, then ty else tp | p — prot,(t1) | p

23



24 Matias Toro, Ronald Garcia, and Eric Tanter

Then
D,

DN VR A SR
585 lc Fprot,(t) : Sy v e
and by definition of the join operator, S; v € <: (S; ¥ S2) v € and the result holds.

(Sprot)

Case (Sif-false). Analogous to case (if-true).

Case (Sref). Then t = ref’ v and
X%l rv:S S <SS L. < label(S)

(Sref) 3
250 Fref?v:Ref, S

Suppose £, such that ¢, < €., then

fr
refsv|y — o, | plo vv ]

where o ¢ dom(u).
Let us take ¥’ = ¥,0 : S and let us call ' = pfo = v v ¢]. Then as dom(y) = dom(X) then
dom(p’) = dom(X’). Also, as €, < €. < label(S) then by Lemma 3.4, ;3; L + v : §' v {, and
S’ v €, <: X(0) = S. Therefore ;3" + p/’.
Then
0:5e¥
26 o, :Ref, S

(S1)
and the result holds.

Case (Sderef). Then ¢ = loy and

0:S€eX
2 €c Fop:Refp S
Xl Flog: Syl

(Sh

(Sderef)

Suppose £, such that ¢, < €., then

tr
log | 1 — vv €| pwhere u(o) =v

Also ;X + pthen 3; L + p(o) : " and S’ <: S. By Lemma 3.4, ;3¢ Fv: S’

il rovl:S v
But S’ v € <: S v € and the result holds.

Case (Sassgn). Then t = o:=v and

0:S€eX D
5250 Fop:Refy S Xl kU Sy
Sy <: S lc v € < label(S)

S
( asgn) ,;Z;[C Fopi=v: Unitl

Suppose ¢, such that £, < {., then

tr .
op:=v | g — unity | plo vy, v {]

Letuscall g’ = pylo— v v & v {]. Also ;2 + p then dom(p’) = dom(2), and -; %; ¢, + v : S, where
Sy <: S. Therefore ;36 F oyl v :Sov v But €, vl < {.v{ < label(S),then Sy v €, v € <: S
and therefore -; 3 + p’. Also

S
o) S+ unit, : Unit,
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but

Unitl <: Unitl
and therefore the result holds.

Case (S::). Thent =v :: Sand
D
2l kU Sy S1 <8
Xl rvaS:S

(S::)
Suppose £, such that ¢, < €., then

[r
vuS|p — vvlabel(S) | u
But S; <: Sthen S; v S = S and therefore S v label(S) = S. Therefore:

;36 + vy label(S) : S
and the result holds.

m]
PROPOSITION 3.6 (CANONICAL FORMS). Consider a value v such that -;%;{. + v : S. Then:
(1) If S = Bool, then v = by for some b.
(2) If S = Unity then v = unite.
A ,
(3) If S = S;—>¢S, thenv = (Alex - S1.ty) for some t, and L.
(4) If S = Ref, S then v = o, for some location o.
Proor. By inspection of the type derivation rules. ]

PropPosITION 3.7 (TYPE SAFETY). If;3; €. + t : S then either

e tisavaluev
4
o for any store pi such that 3 + p and any €, < €., we havet | pv+— t' |y’ and ;5" €. +t' : §’
for some S’ <: S, and some X’ 2 X such thatX' + .
Proor. By induction on the structure of .

Case (Sb, Su, SA, Sl). t is a value.

Case (Sprot). Then t = prot,(t) and

2l v lFt S5
525 lc Fprot,(ty) : Sy v e
By induction hypotheses, one of the following holds:

(Sprot)

[r
(1) t is a value. Then by (R—) and Canonical Forms (Lemma 3.6). ¢ | g + t’ | p and by Prop 3.5,
25l +t': S where S’ <: S and the result holds.
(2) Suppose ¢, such that ¢, < £., then

tlp {_)r\/ ty | i
1 2
(Rprot)

t ,

prot,(t1) | p = prot,(t2) | p
As €, < L then €, v < £, v €. Using induction hypotheses ;X"; €. v € + t; : S] where S <:
and ;3" + y’. Therefore



26 Matias Toro, Ronald Garcia, and Eric Tanter

55l v ity S
535 0c Fprot,(ty) : S{v L
but S] v £ <: S1 v € and the result holds.

(Sprot)

Case (S®). Thent = t; ® t and
2 le F ity i Booly, 350+ ty : Booly,
sl b Dty BOO]([»lvgz)

(Se)

By induction hypotheses, one of the following holds:

(1) t; is a value. Then by induction on #; one of the following holds:
(a) t; is a value. Then by Canonical Forms (Lemma 3.6)

[
tlp — t'|p

(R—) ;
tlpr—t' | pu
and by Prop 3.5, s 2; €.+t : S’, where §” <: S, therefore the result holds.
¢
(b) tp | p +— t} | p’ for all £,” such that ¢,” < {,, in particular we pick £,” = ¢,. Then by
induction hypothesis, s X"; €. + t5 : Boolgé, where Boolgé <: Boolg, and 2" + .
Zr
Then by (Sf), t | p+— t; &t} | p’ and:
2l kit Booly, 3l k1 BOOl[é

S®
©e) 5l b @t BOOI((IVQ)

but
(brv €;) < (61v 62)
Bool(glvgé) <: BOO|([1\/52)

and th[e result holds.
()t | p+> t] | p for all ¢,” such that £," < €, in particular we pick £,” = ¢,. Then by
induction hypotheses, s X; €. F ] : Boolg; where Boolg; <: Boolg,, and ;2 + p’. Then by
[r
S tlpr—t{®t, |y and:
52l F Booly,  +5%;¢c F 2 : Booly,

S
©e) 2l l’ll D1y BOO]((;YQ)

but
(61 v &) < (L v &)
Bool(g;vgz) <: BOO|((J1\/52)

and the result holds.

Case (Sapp). Thent =t; t;, S = Sz v € and
4
';Z;ZC F 1 2511—>[512 ';2; [C ity 52
52 <: S]] fc\/£<€é
2l bty i Siov L

By induction hypotheses, one of the following holds:

(Sapp)

(1) t; is a value. Then by Canonical Forms (Lemma 3.6), and induction on t, one of the following
holds:
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(a) ty is a value. Then by Canonical Forms (Lemma 3.6)

o,
tlp — t'|p

(R—) ;
tlpr—t' | p
and by Prop 3.5 ;2; €. ' : ', where S’ <: S, therefore the result holds.
¢
(b) tp | p +—> t} | p’ for all £,” such that ¢,” < €, in particular we pick ¢,” = ¢,. Then by
induction hypothesis, ; 2’;{;  t; : S7, where S; <: Sp and ;2" + p'.
fr
Then by (Sf), t | g+ t1 t; | p’. But S; <: S; <: Sy; and then:
A
2500 1 S11—eS12 2l t2, : Sé
Sé <: Sll fc Y€<f(l:
-;Z;fc Rt iy 512\/5

(Sapp)

and tfhe result holds.
() t; | p > t] | p’ forall ¢,’ such that £,” < €., in particular we pick £, = €,. Then by induction

¢ ¢ 4
hypotheses, s 2"; €. F t] : S];—> ¢S], where S;— ¢S], <: S11—¢S12, and ;X" + p’. Then
Oy s .
by (Sf), t | g+ t{ t, | p’. By definition of subtyping, S; <: Sy <: 51y, €. < €/ and ¢’ < (.
Therefore €. v ¢’ < €. v € < €, < (. Then
Xl bt S =S, 3l bty : Sy
Sy <: 814 Loyl <t
52l bty Sy vl

(Sapp)

but S7, v ¢’ <: S12 v € and the result holds.

Case (Sif). Then t = if ty then t; else t, and

2, F o : Booly
2l v Ot 2 S5 25l vl ity S,y
525 € v if ty then ty else ty : (S1V Sy) v €

(Sif)

By induction hypotheses, one of the following holds:

(1) to is a value. Then by Canonical Forms (Lemma 3.6)

b,
tlp — t' | p

(R—) ;
tlpr—t' | p
and by Prop 3.5, -; %; €. + t' : S, where S” <: S, therefore the result holds.

&' . . .
(2) to | p > t | p’ for all £’ such that £," < £, in particular we pick ¢," = ¢,. Then by
induciton hypothesis, -; 2; . F t; : Booly, where Booly <: Booly and ;2 + p’. Then by (Sf),
fr .
tlpur—iftjthentyelsety | p’. Asle v’ <{.v{ byLemma3.2, %€ v{ Ft:S] and
52l v F ity 1 S5, where S <: Sy and S, <: S,. Therefore:
2 € F t) : Booly
sXlevl PS5 Elev ikt S
52l k- if tg then ty else ty : (ST S3) v ¢’

(sif)

but by definition of join and subtyping (S; ¥ S3) v £’ <: (S1 V S2) v £ and the result holds.
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Case (S::). Thent =t; = S; and

sl b ST S < S,
2l bty Sy S,

By induction hypotheses, one of the following holds:

(S=2)

(1) t; is a value. Then

Kr
tlp — t'p

(R—) ;
ear
and by Prop 3.5, -; 3; €. + t' : S, where S” <: S, therefore the result holds.
fr
(2) t1 | g t] | p’ forall ¢,” such that £,” < €, in particular we pick £,” = ¢,. Then by induction
{)r

hypothesis, -; X; ¢ + t] : S7, where S| <: Sy and ;2" + p'. Then by (Sf), t | g+ t{ = Sz | p'.

Also, §7 <: 81 <: S, and therefore:
s le FH ST S < S,

S::
(5:) 52l bt S80S,

and the result holds.
Case (Sref). Then t = ref° t and
s le bt S) S]<i St Lo < label(Sy)
2l refS-e t; : Ref | S
By induction hypotheses, one of the following holds:

(Sref)

(1) t; is a value. Then

fr
tlp — 1y

(R—) ..
tlpr—t [y
and by Prop 3.5, ; 3; €. + t' : S', where " <: S and -; X’ + p’, therefore the result holds.
()t | p 0& t] | p’ forall £,’ such that ¢,” < €, in particular we pick £,” = ¢,. Then by induction
hypothesis, -; %; €. F t] : S{’ where S{’ <: S{ and -; 2’ + p’. Then by (Sf), ¢ | K ref ¢/ | i’

and:
sl bt Sy ST < St Lo < label(Sy)

(Sref) 5
5250 Fref? ] : Ref | Sy

and the result holds.

Case (Sderef). Then t = !t; and

2 0c F 1y : Refp S;
2l bl S vl
By induction hypotheses, one of the following holds:

(Sderef)

(1) t; is a value. Then by Canonical Forms (Lemma 3.6)

b,
tlp — t'p

(R-) -
tlpr—t' | p

and by Prop 3.5, -; %; 6. + t' : S, where S” <: S, therefore the result holds.
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[r
(2) t1 | p— t] | p for all £,” such that £,” < £, in particular we pick ¢,” = ¢,. Then by
induction hypothesis, -;2; £ + t{ : Refy S; where Refy S; <: Refy Sy and -; 2’ + p’. Then by

¢
(Sf)t | p -5 1 | 4 and:

520 1] : Refpr S
520 Pt S vl

(Sderef)

but S; v ¢’ <: S; v € and the result holds.

Case (Sasgn). Thent = t; := t; and

Xl bt :Refp Sy 36 bty Sy
Sz <: 51 fc Yf < labeI(Sl)
2 =1y Unit

(Sasgn)

By induction hypotheses, one of the following holds:

(1) t; is a value. Then by Canonical Forms (Lemma 3.6), and induction on #; one of the following
holds:
(a) ty is a value. Then by Canonical Forms (Lemma 3.6)

fr
tlp — t" |y

‘&
tlpr—t' |y
and by Prop 3.5, 2; €. + ¢’ : S’, where S’ <: S and ;X + i/, therefore the result holds.
¢ . . .

(b) t2 | g+ t; | p’ for all £’ such that £,” < €., in particular we pick ¢,” = €,. Then by

induction hypothesis, -; 2’; €. + t; : S; where S5 <: S; and ;%' + .

£,

Then by (Sf), t | pr—t1:=1t; | p’. As S; <: Sy <: Sy, then:

Xl bt i Refp St 5 ZlcF 1) 0 S
S} < 8 {. v € < label(Sy)
520 F 1y =ty Unity

(Sasgn)

and the result holds.
[V . . .
(2) t; | g V— t] | p forall ¢,” such that £,” < £, in particular we pick £,” = ¢,. Then by
induction hypotheses, -; 2’; €. + t{ : Refy S;, where Refyr S; <: Ref, Sy and ;%' + p’. Then

fr
by Sf),t|p+—t] =t | p'. As €’ < {then (. v ¢’ < £, v { < label(S;), and therefore:
52l Ft]:Refpr S1 5l F 11 Sy
Sy <: 85 fc Y 0 < label(Sl)
525 0e F 1 =ty : Unit

(Sasgn)

and the result holds.

3.2  SSLges: Noninterference

In this section we present the proof of noninterference for SSLget. Section 3.3 present some auxiliary
definitions and section 3.4 present the proof of noninterference.
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2k (51,01,/11) zlgo (ba,v2,12) 1 S &= {1 e, OOANZF %]EO pa ANE; L ko Slf,S,f <: S,

A (Ongo(fi,S) == ObSRe]i:?o(fl,vl,yl,fz,,vz,yz))

obsReIi’? (1,01, 11, €2, 02, p12) = (rval(vy) = rval(vy)) if S € {Booly, Unity, Ref, s’}
4 .
obsRely 9% (61, w1, 1, g, 03, 1) &= Vj S KNEC LB k(0,0 1)) &) (o, v, p13) < S,

S k(b o1 o, i) &, (G, 02 V5, 413)  C(S2V 9)

R (fl,l’l,[ﬂ) z’;ﬂ <fz,t2,y2> : G(S) — O ¢, ly A2 ko %];0 Ha A2kt :S{,S{ <:S5,Vj < k
P s
(il =57t g = Skl ~g 7 pga

(irred(t]) = ' F(Cr. 1], ) %3 (oo th113) )

Sk z’go U = Zrp AV, =, .fz,j < k,Yo € dom(u1) N dom(py)
2 (o), ) &y (L2 pi2(0), pi2) = 2(0)
01 e, 2 — ObS[O i) v —|0b5[0 (&)
o —pz = dom(py) € dom(pz)
obsg (£,S) &  obsg (£) Aobsg, (label(S))
obsy (f) &= (<4,

Fig. 22. Security logical relations

3.3 Definitions
To define the fundamental property of the step-indexed logical relations we first define how to
relate substitutions:

Definition 3.8. Let p be a substitution, I' and ¥ a type substitutions. We say that substitu-
tion p satisfy environment I' and X, written p |= T;Z, if and only if dom(p) = T and Vx €
dom(T'), V€., T2, €. + p(x) : S’, where §” <: I'(x).

Definition 3.9 (Related substitutions). Tuples ({1, p1, p11) and
(€2, p2, ji2) are related on k steps, notation I'; X + ({1, p1, pi1) z’go (Ca, p2, o), if pi ETZ, 2 F 1y z’go
1z and

Vx € T.3 (0, p1(x), 1) ~5, (L2, pa(x), pi2) : T(x)

3.4 Proof of noninterference
LEMMA 3.10 (SUBSTITUTION PRESERVES TYPING). IfI;3; 0t :Sandp |E T2 thenT; 20 F p(t) :
S" and S’ <: 8.

Proor. By induction on the derivation of I';Z; £ + t € S. m]
LEmMA 3.11. Consider stores iy, 12, 111, [t such that u; — u}, and substitutions p, and p,, such that

r;z [ <€1’ plaﬂl) zlgo <£2’ sz ll2>: then lfVJ < k’ lf‘z c ZI’ zl F 'U{ z][U :ué then r’ ZI = <€1’ ,Dl, )ui> szo
<£2’ Pz, )ué>
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Proor. By definition of related computations and related stores. The key argument is that given
that p; — p then p} have at least the same locations of y; and the values still are related as well
given that they still have the same type. O

LEMMA 3.12 (SUBSTITUTION PRESERVES TYPING). IfT; ;€0 + ¢t : S thenV¢' < £, T;%;0" < € :S.

Proor. By induction on the derivation of T';3; £  t € S. O

LEMMA 3.13 (DOWNWARD CLOSED / MONOTONICITY). If
(1) =+ {by, 01, 1) zlgo (€a,v, iz) : S then
Vi < kS (o m) %) (G.va ) : S
(2) S (bt ) ~f (Co,ta, prz) : C(S) then
Vi < kS E (Ot ) & (ot i) C(S)
(3) S+ ~E py thenVj < kS vy ~)

Proor. By induction on type S and the definition of related stores. O

LEMMA 3.14. Consider simple values v; : S; and
%k, 1, 1) zlg(u (€3, 02, p2) : S.
Then

S F (b (01 v €), ) X, (Lo (U2 v 0)pi2) 1 Sy L

Proor. By induction on type S. We proceed by definition of related values and observational-
monotonicity of the join, considering that the label stamping can only make values non observable.
]

LEMMA 3.15 (REDUCTION PRESERVES RELATIONS). Consider X;¢; + t; € T[S], p; € STORE, 3 + p;,
and X v i z’gn Uy. Consider j < k, posing t; | p; iR Tt pl, = C 3,3 F pl we have
Skl ) &5 (oo, ) - C(S) if and only if 3 v (6.t u) <57 (Gt ) - C(S)

Proor. Direct by definition of
Tk (b, b, ) z’go (€2, 13, 1z) : C(S) and transitivity of N J, O

LEMMA 3.16. Consider term Z;€ v t : S, store p and j > 0,
such thatt | p +—7t' | . Thenpy — ',

Proor. Trivial by induction on the derivation of t. The only rules that change the store are the
ones for reference and assignment, neither of which remove locations. O

LEMMA 3.17. Suppose that 2 + (€1 v €], t1, 1) z’go (o v €5, b2, p2) : C(S), and that {; + prot, (t) :
SINELSIv ) < Sy € fori € {1,2). If 6, = €5, and {] ~§ &5,
then X + ({1, prot€; (t1), p1) zlgo (L, protgé(tz),,uz) :C(Sv )
Proor. Consider j < k, we know by definition of related computations that
vt
ti |l v~ t] |y

then g z]éo Hy, and by Lemma 3.16 y; — pj. If t] are reducible after k — 1 steps, then the result
holds immediately by (Rprot()). The interest case if ¢; are irreducible after j < k steps:
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Suppose that after j steps t; = v;, then X’ + ({1 v €1, v1, p17) zl;;j (Cy v £, 02, u3) : S, for some X’
such that > C >’.
Therefore:
proty, (1) | 1,

b .
L proty, (o) |
t;

= (v ) |y

Let us suppose X'; €; + v; : S}, where S!” <: S} <: S. Then X';¢; + vy v} : S/’ v}, and S/ v £} <: Sv L.
If —~obsg, (¢; v £;) by monotonicity of the join either —obs,, (£;) or —obs,, ({;). If =obs,, (£;) then
—0bsg, (S v €7) and the result holds. If —obs,, (£;) the result holds immediately. If obs,, (¢; v €}, S)
then obs,, (£;, S v €;), then the result follows by Lemma 3.14, and by backward preservation of the
relations (Lemma 3.15).

O

LEmMA 3.18. Consider €, such that —obs, (), then then Vk > 0, such that, 2;{+t : S, 2 + p
tlp s kt"| ', then Ve,

(1) Vo € dom(’)\dom(y), ~obs., (¢', '(0).

(2) Yo € dom(u’) N dom(y) A p'(0) # p(o), ~obse, (label(Z(0))) .

Proor. We use induction on the derivation of t. The interest cases are the last step of reduction
rules for references and assignments.

Case (t = opr:=v). We are only updating the heap so we only have to prove (1) and (2). Then

0=V s unity | plo = (vy (£ v €"))]

Next we have to prove that obs,, (label(£(0))) is not defined. As 3; ¢ + t : S, then we know that
£ v {"” < label(Z(0)), and as =(obs¢, (€)) by monotonicity of the join the result holds.

Case (t = refS v). We are extending the heap, so we need to only prove (1). Then

refS o | i |i>oJ_ | ulo— (vv )]

where o ¢ dom(u). We need to prove that obs,, (label(v v £)) does not hold, which follows directly
by monotonicity of the join.

LEmMA 3.19. Consider €, such that obs,,(€) does not hold, then then Yk > 0, such that

¢
Y0t : Sy, and thatt; | p; — *t] |y, then if 3 v 1y z'go Ho, then X" + pj z’gu Hy for some ¥ such
thaty C ¥’ and thatX'; € + t] : S|, where S| <: §;.

Proor. By Lemma 3.18 we know three things:

(1) Yo € dom(uj)\dom(u;), obse, (€, i (0)) does not hold, i.e. new locations are not observable
and therefore as X’; ¢  pj(0) : S and S <: ¥’(0), then —obs,, (label(2(0))) .

(2) Yo € dom(u}) N dom(y;) A p;(0) # (o), ~obse, (label(%(0)))
i.e. for all updated references they have to be previously not observable, and by definition
therefore related, and second they are still non observable after the update, and by definition
those locations are still related under £ because >(0) = 2’(0).

Therefore X’ + pf zlgo 5 and the result holds. O
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LEMMA 3.20. Suppose thatZ;{; + proty (t;) : 8" v €], S'v€] <: S fori € {1,2}, where ~obs,, (£;v{}).
Also consider two stores yi; such that ¥ v 1y z’gv L.
Then X + {{1, prota(tl),pl) zifu (s, protgé(tz),pg) : C(S)
ProOOF. Suppose that after at least j more steps, where j < k, both subterms reduce to a value :
vt ,
tlp w— 7 vy
Therefore:
prot{,;(t) |y
[l . ,
=7 proty, (v1) | 4
1

i
—

(0i v €) | i

As the values can be radically different we have to make sure that both values are not observables.
If —obs, (¢;) then the values are not observables because the security context is not observ-
able. Let us assume that obsg, (¢;) holds, but obs,, (¢;) not. Then by monotonicity of the join,
—-obs, (label(v;) v ¢]) and the result follows.

Now we have to prove that the resulting stores are related, for some X’ such that ¥ C ¥’. But by
Lemma 3.19 the result follows immediately.
O

Next, we present the Noninterference proposition.
PROPOSITION 2.5 (SECURITY TYPE SOUNDNESS). IfI; 2,6 Ft:S] = VS,S] <:S,I;54: =t:S
Proor. We proceed by proving a more general proposition instead:
IfT;5:¢; £ :S],S] <: S, then Vpi; € STORE, 3 F p1;, and Yk 2 0,¥p; € SUBST, I3 + ({1, p1, 1) =5,
(€2, p2, p2) , we have I + (€1, p1(t), p1) z’éo (l2, pa(t), p2) : C(S).
By induction on the derivation of term t. Let us take an arbitrary index k > 0.
Case (x). t =xand T'(x) = S. ;3 + ({1, p1, 1) z’z,o (€2, p2, p12) implies by definition that
3+ (b, p1(x), 1) z’go (€2, p2(x), 2) : S, and the result holds immediately.

Case(b). t = b,. By definition of substitution, p;(b,) = p2(by) = b,. By definition, X + (€1, by, ji1) zlgo
(€, by, p2) : Bool, as required.

Case (0). t = o4 and X(0) = S, where S = Ref,, S;. By definition of substitution, p;(0,,) =
p2(04,) = 0,4,. We know that 3; £; + o4, : Ref,, Sq. By definition of related stores, X + ({1, 04, , 1) z’;g
(€a,04,, 112) : Ref, Sy as required, and the result holds.

" 4 e
Case (A). t = (A%x : S].t;)¢. Then S} = S1—¢,Si5, and S = 51—¢5,, where " <: S.
By definition of substitution, assuming x ¢ dom(p;), and Lemma 3.10:

"

” ¢
;56 pi(t) =TI;2;¢ + (Afﬂx : Sl~pi(t1))€’ : S{—mS,'é
where S}; <: S;. Consider j < k, p1, 5 such that y; — pjand X C " 2" + g z”éo Hy, and assume
two values v; and v, such that 3’ + ({1, vy, p7) zﬁgo (€2, 02, p13) = S1.
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We need to show that:
(L, (Aex  S]pa(t)e o, )
~p, Kl (A%x s S{pa(t))e vao 1) 2 C(Sy)
Then:
(Afex = S.pi(tr))e vi | pif
ti ,
= prot, ([vi/x]pi(t)) | yi
7 ,
> prot,([vi/x]pi(t1)) | y]
We then extend the substitutions to map x to the arguments:
pi = pilx & v}
We know that 3’ + ({1, vy, pi1) z{,g (2, V9, p3) + S1. So as p; — i then by Lemma 3.11, T, x :
Sl; P <[19P{7IJ{> zjfo <€27 pé’ ué)
By Lemma 3.10, I'; ", £ + pi(t1) : S5 where 75 <: Sj, <: S3. We know that £; v¢’ < £/, therefore
by Lemma 3.2, I;£";¢; v € + pj(t1) : Si3. Then by induction hypothesis and Lemma 3.13:
SRy L (t) ) A (G v € ph(t). pg) s C(Sa),
Finally, by Lemma 3.17:

S (G proty (p}(t). 1)
<) (Laproty (p5(1)). pg) : C(S)

and finally the result holds by backward preservation of the relations (Lemma 3.15).

Case (!). t =!t', where 3;{; + t" : Refg/l_’ S, where S; v &) <:S=8v¢C.
By definition of substitution:

pi(t) =!pi(t’)
We have to show that

Skl pi(t), )
Itfc, (€, 1pi(t"), p2y : C(S)

By Lemma 3.10:
8k pi(E) S v

where ¢;” < ¢}’ < {. By induction hypotheses on the subterm:

S E Al pi (), i) 75, (Cas pa(t), p12) - C(Ref ¢ Sp)

Consider j < k, then by definition of related computations

’ bi g ’ ’ 5 r k=i . ’ ’ ro k—j o
pi(t") i — 7t |y = TCEE g zt)o] poA(irred(t]) = 2 F (1, ], p1) zfoj (€2, t5, iz = Refe Sp)

If terms t] are reducible after j = k — 1 steps, then
t;
pi(t) | ui +— 71t} | p} and the result holds.

i
If after at most j steps ¢/ is irreducible it means that for some j* < j, !p;(t) | pi +—— 7 lv; | pi. If
Jj' = j then we use the same same argument for reducible terms and the result holds.
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Let us consider now j* < j. Then ¥’ + ({1, vy, p7) z];o_j/ (€3, vz, p13) : Refy S1. By Lemma 3.6, each v;
is a location 0ifrs such that 2’(01-[;) = Refy 51 and £} < {’. Then:

iy ,
pi(t) [ 7" o | pif

i
= proty (v) |
with €] < ", v] = ,u{(Oi[;_), As 3 F (€1, 01, 1) z];;j’ (€2, 3, ) : Refe Sy, then by By monotonicity
of the join either both obs¢, (£;) or ~obsg, (¢}). Finally as 2’ + (€1, v1, p1) zlgo_] (2,05, 43y = S1, by
Lemma 6.59,

. 2"k (ty, prot, (CHNTS
~7,  (Ca.proty (vy), pp) : C(S1v )

and finally the result holds by backward preservation of the relations (Lemma 3.15).

Case (:=). t = t;:=t5. Then S = Unit.
By definition of substitution:
pi(t) = pi(t1):=pi(t2)
and Lemma 3.10:
30 F opi(t):=pi(t2) : Unity
We have to show that
%k (b, pr(t)=pi(ta), p1)
z’;ﬂ (Ca, pa(t1):=p2(t2), u2) : C(S)
By induction hypotheses

2 E Al pr(t), ) &5, (Ca pa(ty), p2) : C(S))

Suppose j; < k, and that p;(#;) are irreducible after j; steps (otherwise, similar to case !, the
result holds immediately). Then by definition of related computations:

N ’ Y r k=j1 ’ ’ k—j ’
pi(t) | pi =i | = ZCELE kg~ T NS (v ) w7 (G, 2, i) < Ref Sy
By Lemma 3.16 y; — i, and iy z’;jl 15 then by Lemma 6.41, 3 F (€1, p1, 17) zlzu_jl (€2, pa, 115). By
induction hypotheses:
Sk (b, pi(t), 1) 5, (Lo pa(t2), 3) = C(Sa)

Again, consider j, = k — ji, if after j, steps p;(;) is reducible or is a value, the result holds
immediately. The interest case if after j; < j, steps p;(t°2) reduces to values v/:

E( o k—' i k— _i
S; ’ LN 77 ’ J/AR Y] 1 J1=J 7 7 r o J1—=J. a7
pi(t7) | i = o i = XS BV T ) NS R (v py ) R (G 0 )
Then
& .o k—ij—i’
S i + ’ ’” ’” ” 1=l 1
pi(t) | pi = M rop=op [ AST o T g

As both values v; are related at some reference type, then by canonical forms (Lemma 3.6) they
both must be locations oig, for some S7 <: S;. We consider when the values are observable and the
locations are identical (otherwise the result is trivial):
vii=o] |
Al

1 1"

i .
— © unity |y

:52
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Where pi” = pi’lo = (v]v ({iv i) As 27 v (61,01, 41" ~k ~hl, (la2, 05, 13’y = Sz, and as
t; v €] < label(S1), where ¢ < ¢, and label(v]) < label(S,), then 2”;{’,- Fojv (€ veE]) S and
S’ <: 1. Then by monotonicity of the join Lemma 3.14,
7 E A (v] v (v €9)s 1)
kit
~ TR (G (0 v (Gav ) )
But if ~obs,, (¢;) then by monotonicity of the join —obs., (v} v (; v £;)). Therefore, V¢;" such that
N
e (o v (Gov £9), 1)
k—ji~7,
=0, G v (G v ), p)
As every values are related at type Unit, we only have to prove that " + p” uy”, but

using monotonicity (Lemma 6.46), it is trivial to prove that because either both both stores update
the same location o to values that are related, therefore the result holds.

k11123

Case (ref ). t = ref>' t51. Then S = Ref, S;.
By definition of substitution:

pi(t) = ref> p;(t’)
and Lemma 3.10:

; v refSt pi(t') : Ref, S,

We have to show that

3 F (b, refSt pi(t)), )

~f, (Loref™ py(t'), pz) : C(S1)

As 3l + pi(t’) : S} where S] <: Sy, by induction hypotheses:

S F (L pr(t), 1) ~F, (Canpa(t), i) C(S))
Consider j < k, by definition of related computations

A . .

pi(t) | pi Fo T |l = B CELE ko Ay phAGirred(t]) = 3k (Gt )~y (Gt ) ¢ S)

If terms ¢/ are reducible after j = k — 1 steps, then
&

refS! pi(t)) | i +— Treft t; | y} and the result holds.

T
If after at most j steps t] is irreducible, it means that for some j* < j refS: pi(t") | gy —7 ref> v; | 1.
If j* = j then we use the same same argument for reducible terms and the result holds.
Let us consider now j’ < j. Then:

li o
pit) | p +— /1 ref>! v; | T4
C;

— 1

o | pf
with, pi’ = pifo = (v; v €;)]. Also,as 2’ + (€1, v1, p1) z/;;j, (2,02, 5y : Sy, then 2" + (€1, v1, u1’) zlgoﬁ/
(l2, 02, 3’y = Sy, with X" = ¥’,0 : S;. And as label(v;) v ¢; < label(S;),then by Lemma 3.14,
SRl v v b pp) ~k7] (€a, 09 v ba, p3) = Sy

If —obsg, (¢;) then by monotonicity of the join —obs, (Iabel(v v ¢;)) and —obsg, (label(£"(0))).
Therefore, Y¢; such that £{" = k {’é’ IR v v b, pp) Ry k=j' (€5, vy v €2, p13) : S1. By definition of

related stores X" — iy’ ~];0 7 . Then by Monotonicity of the relation (Lemma 6.46) "' — py’ ~§0 72

5/ and the result holds.
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Case (®). t =t ®; 1ty

By definition of substitution:
pi(t) = pi(t1) &; pi(tz)
and Lemma 3.10:
8+ pity) &; pi(ty) : S”
with §}” <: 5] <: S. We use a similar argument to case := for reducible terms. The interest case is
when we suppose some j; and j, such that j; + j, < k — 3 where:

[T k—j k—j
pi(t)) | i Vo [ puf = T C¥LE b pp 7y NS R (G, o0, i) Xy T (o v, 1) 2 S

pi(ta) | p} N Rog | pl = ¥ ¥k z’;o_jl_jz ' AZ F (C, 012, 11) zlzo_jl_jz (Cay 022, 13’ ) + Sa
By Lemma 3.6, each v;; is a boolean (b;;)¢;, then:
pi(t) | pf’
It (i), @ (Bin)ey, | i)
=t (b |y
with b; = b1 [®]bi2, €] = €11 v iz, and €] < label(S}’) < label(S). It remains to show that:

” ” k—j1—j2— ’”
2Tk <€1’ (bl)fi’,ul > zé’oh 273 <£2’ (bZ)t’;’,UZ > : S

If —obs¢, ({;), then the result is trivial because the resulting booleans are also related as they are
not observable.

If obsg, (£;), and —obsg, (£};) or —obs¢, ({;,), then by monotonicity of the join, —obs,, (£;) and
the result holds. If obs,_(¢;;) then obs., ({;) and therefore by; = by; and by = by, so by = by, and
the result holds.

[ci fci [c
Case (app). t =ty tp, with 3;€; v 17 : Sii—>¢Siz, and X;¢; F tp : S71. Also Sit—¢,Si2 <t S1—¢S2,
and S = S,.

By definition of substitution:
pi(t) = pi(t1) pi(t2)
and Lemma 3.10:
%l v pi(th) pi(ts) = Siy
with S}, <: S;z <: S;. We use a similar argument to case := for reducible terms. The interest case

is when we suppose some j; and j, such that j; + j, < k where by induction hypotheses and the
definition of related computations:

{)i i k—i k—i
pi(t) [ i v Do | pp = B CELE ki~ T g NS E (G on ) 2 (G v i) < S
b
pilte) | pi = ol i = 273k gy
Then

k=ji=j2 ’” m\ L k=ji—Jj "y .
mp Ty NET R (G o, ) R (G vaa, 1y ) 2 S2

e
pi(t) | i V— v vy | !
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If obs¢, (€i,vi1) then, by definition of ~,, at values of function type, we have:

o 2k, (o vi2), 11
z’;;hﬁz (€a, (V21 V22), ') : C(S2 v £)
Finally, by backward preservation of the relations (Lemma 3.15) the result holds.
If —obsg, (€;, vi1), and we assume by canonical forms that v;; = (Af'cix. t; )gg/ then, either —obs,, (¢;)
or —obsg, (¢;) and
(Vi1 vi2) | py’
= ((/V)”x-ti)fg’ viz) |
oprote (&) | p
If either —obsg, (¢;) or —obs;, (£;) then by Lemma 3.20 ,

X7k (L, prot[;,(t{),,ui'>
~p TR (G, protyy (), 1) s C(Sy v 0)

l;
—

o

Finally, by backward preservation of the relations (Lemma 3.15) the result holds.

Case (if). t = if t; then t; else t5, with 3;€; - t; : Sy, 25 €]+t : Sp, ;€] & t5 : S5, €] = €; v label(S1),
and S’ = Sz VS3 <:S
By definition of substitution:
pi(t) = if pi(t1) then p;(t2) else p;(t3)

We use a similar argument to case := for reducible terms. The interest case is when we suppose
some j; and j, such that j; + j, < k where by induction hypotheses and related computations we
have that:

’ ’ ’ k—j ’
py A2k (b, v, ) zgoh (€2, Va1, fig) + S1
such that X;¢; + (bi1)¢,, : Boolg, and Boolg,, <: Sy,

b i
pit) | i — oy |y = EC33 vy ~, S

o

By Lemma 3.6, each v;; is a boolean (b;1)
implies S; = Bools/. Then:

i1’

[T . ’
pi(t) | i +— 7hif (biy)e,, then p;(t;) else pi(ts) |

Let us consider —obs¢, (¢;, (bi1)¢,, ). Let us assume the worst case scenario and that both execution
reduce via different branches of the conditional.
Then

6 ,
pi(t) | ;1 — h+2prot5“(p1(t2)) | 1
l; ,
pa(t) | 2+ "*?prot,, (pa(ts)) | 15

But because —obs¢, (€;, (bi1)¢,,), then either —obs,, (€;) or ~obs,, (£;1) and therefore, =obs;, (£; v €i1).
Then by Lemma 3.20,

'+ (ly, proty, (pi(t2)), pi) 25, (Lo, proty, (pa(t3)). )

and the result holds by backward preservation of the relations (Lemma 3.15).

Now let us consider if obsg, (€;, (bi1)¢,,) holds. Then by definition of ~¢, on boolean values,
bi1 = bz1. Because by; = by, both p1(t) and p,(¢) step into the same branch of the conditional. Let
us assume the condition is true (the other case is similar):
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Then by induction hypothesis X" + (£; v €11, p1(t2), u1) z’lfo €y v a1, p2(ta), p3) = Sz, and by
Lemma 3.17,

3k (G, proty, (pr(t2)), 1) ¢, (b prot, (pa(t2)), ) - S
and the result holds by backward preservation of the relations (Lemma 3.15).

Case (prot()). Direct by using Lemma 3.17.

4 GRADUALIZING THE STATIC SEMANTICS

In section 4.1, we show the proof of optimality and soundness of the abstraction. In section 4.2, we
present the proof for the Static Gradual Guarantee.

4.1 From Gradual Labels to Gradual Types
PROPOSITION 4.1 (& 1S SOUND). If?i 0 then £ C y(a(z)).
Proor. By case analysis on the structure of L.IFC = {€} then y(a({€})) = y(0) = {¢} = l,

otherwise R
y(a(€)) =y(?) =LABEL 2 £. O
PROPOSITION 4.2 («¢ 1s OPTIMAL). If?g v(g) then a(?) Cg.
Proor. By case analysis on the structure of g. If g = £, y(g9) = {{}; tc{e),t+0 implies
al@) =a({l})=€C g (if€=0,a(f)is undefined). If g =2, g’ C g for all g’. )

PROPOSITION 4.3 (a 1s SOUND AND OPTIMAL). If € # 0 then,
(i) € S y(a(f)).
(i) If C y(g) then a(f) C g.

Proor. Trivial using Prop 4.1 and 4.2. O

PROPOSITION 4.4 (as 1S SOUND). If S valid, then S C ys(as (§)).

Proor. By well-founded induction on S according to the ordering relation S C S defined as
follows:

dom(S)c S

cod(jS) T S
Where El;n, cod : P(GTyrE) — P(GTyPE) are the collecting liftings of the domain and codomain
functions dom, cod respectively, e.g.,

dom(S) = { dom(S) | S €S} .
We then consider cases on S according to the definition of as.
Case ({ Booly, }).
vs(as({Boolg, })) = ys(Bool (7))
= {Bool¢ | £ € y(a({£i )}

2 { Boolg, } by soundness of a.
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—
Case ({ Sii—¢,Si2 }).

YS(aS({Silﬁ’fiSiZ N)

L —
=ys(as({Sin}) — a({?,)aS({SiZ 1)

~ystas(S ) S pslasSE )

by induction hypothesis on { S;; } and { S;; }, and soundness of a.
Case ({ Refy, S; }).
ys(as({ Refe, i 1))

= ys(Ref 77, @s({Si }))
= {Ref, S | 5 ey(a({ i), S eyslas({Si}))}
2 {Refy, S;}

by induction hypothesis on { S; } and soundness of a.

PROPOSITION 4.5 (s 1S OPTIMAL). IfS valid and S C Ys(U) then aS(S) CU.
Proor. By induction on the structure of U.

Case (Bool,). ys(Booly) = {Bool, | £ € y(g)}
SoS = {Booly | € € ?} for some £ C y(g). By optimality of a, a(€) C g, so as({ Bool, | £ € Z}) =

~C
Bool «® Bool,.

9e y(gc)
Case (U —g U2)~ YS(U1_>gU2) = YS(UI)_>y(g)YS(U2)-

- e I
S0 8 = {51i—,52i }, with { Sy, } € ys(Uh), o
{S1i} € ys(Uz), {€c;} € y(ge) and {€.;} C y(g). By induction hypothesis, as({S1; }) E U; and

_ - —_ [ci
as({ Szi }) E Us, and by optimality of o, a({ {¢; }) E 9. and a({ {; }) E g. Hence as({ S1;—¢,52: }) =

— a({te; ) -— 9e
as({S1:}) — aqgpnas{ Sz }) C Ui—4Us.

Case (Ref, U). ys(Ref, U) {Refe S| Cey(g),SeyU)}

So S = {Ref, S| € € 5 Se€{S;}} for some {S;} C ys(U) and some {c v(g). By induction
hypothesis 0{5( {S;}) C U and by optimality of «, a(z) C g,s0as({Refp S| ¢ € ZS e{Si}) =
Ref as( i}) E Ref, U.

PROPOSITION 2.9 (as 1S SOUND AND OPTIMAL). Assuming S valid:
(i) S S ys(as(S)) (it) If S € ys(U) then as(S) EU.

Proor. Trivial using Prop 4.4 and 4.5. O
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4.2 Static Criteria for Gradual Typing

In this section we present the proof of Static Gradual Guarantee for GSLgey.

PROPOSITION 4.6 (STATIC CONSERVATIVE EXTENSION). Let ks denote SSLgef’s type system. Then
for any static language term t € TERM, ;3;{; ks t : S if and only if s X; €.+t : S.

Proor. By induction over the typing derivations. The proof is trivial because static types are
given singleton meanings via concretization. O

Definition 4.7 (Term precision).

7 ’ ’”
tCt 9c E gc

cyg g UclU] gcyg’
e = — o=t e)— T Y
= g =Yy’ unitg = unity (Aex 1 Up.t)g E (Mex : Uj.t")y
tCct’ Cg not tCt HEt Lt
(Pprot) 9=9 n (Po) ! 5 2 ; (Papp) ! Y :
protg(t) c protg/(t ) HhehTtl ot (5 I ZJ S 4
ICt HCH Lt C ¢ cu’
(Pif) — 1 2 (Pry— =1 l,] = U,
if t then t; else t C if ¢’ then t; else t t=uCct =U

—_— c C tHCt; tCt
(Pref) te? v _,U (Pderef)t_it, (Pasgn) ! 2
refU ¢ C refU" ¢/ Tt

tii=ty C 1=t
Definition 4.8 (Type environment precision).

rcry uvcvu’
.C. Ix:UCT',x:U’

LEmMMA 4.9. IfT; 9.+t :U andT ETV, thenT’;;g. +t : U’ for some U E U’.

Proor. Simple induction on typing derivations. O

LEmMMA 4.10. IfU; < Uz andU; C U] and U, C Uy thenU{ < Uj.

ProoF. By definition of <, there exists (S;,S;) € y*(Uy, Us) such that S; <: S,. U; € U/ and
U, C U; mean that y(U;) C y(U;) and y(U,) C y(Uy), therefore (S, Sz) € y*(U{,Uy). O

LEMMA 4.11. Ifm, 91 E 91,92 E g5 and g3 C g}, then g{ v g; < g5.

Proor. By definition of the consistent judgment, there exists ({1, {2, {3) € y3 (91, g2, g3) such that

tivl, < l3.91 € g{, 92 £ g3 and g5 C g5 mean thaty(91) < y(91), v(g2) < y(¢3) and y(g3) < y(93)
respectively. Therefore ({1, €, (3) € y* (g1, g2, 93)- o

LEMMA 4.12. If g1 < g2, g1 C g and g, C g3, then g] < g;.
Proor. Using almost identical argument of Lemma 4.11 O
PROPOSITION 4.13 (STATIC GRADUAL GUARANTEE). Suppose gc1 E gep and ty C t.

If;5;9c1 v t1: Uy then ;-5 gea F tp : Uy where Uy E U,

Proor. We prove the property on opens terms instead of closed terms: If I';-; g¢q + t; : Uy,
ge1 E g2 and t) C by thenT; 5 gep F £ : Uy and Uy C U,
The proof proceed by induction on the typing derivation.

Case (Ux, Ub, Uu). Trivial by definition of C using (Px), (Pb), (Pu) respectively.
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Case (UA). Then t; = (A%x : U{.t)g and U; = Ul’g—C>gUZ'. By (UA) we know that:

T,x:U/;9 +t:U)
U2 1 Jc 2 (1)

T35 e1 b (A%ex s U/t Ul,i)gUZ,

Consider g., such that g.; C g.2 and t; such that #; T t,. By definition of term precision f, must
have the form t, = (A%x : U{’.t"); and therefore

tCt’
9.Cg9) UCU’" gCy¢

(MWex : Ul.t)y T (Aex - Uty

() )

Using induction hypotheses on the premise of 1, I',x : U/;-; 9.2 + t' : Uy’ with U] € U)’. By
Lemma 4.9, T, x : U{’;; 9c2 + t' : U;”” where Uy’ C U,”. Then we can use rule (UA) to derive:

L,x: U9/ vt/ U
) 1559 2

" 9¢
T550c F (Mex s ULt )y U — o Uy”
Where U, C U,’. Using the premise of 2 and the definition of type precision we can infer that

ge g¢
’ 7’ 124 1244
Ul—>gU2 cU; —>g/U2

and the result holds.
Case (Uo). This case can not happen because initial programs do not contain locations.
Case (Uprot). Then t; = prot,(t) and Uy = U v g- By (Uprot) we know that:

Tisgeavgrt:U
I55ge1 b prot,(H) : Uvyg

(Uprot)

®3)
Consider g.; such that g.; T g.2 and t; such that #; C t;. By definition of term precision #; must
have the form £, = prot ,(¢’) and therefore

tCt' gCy¢’
prot, (¢) C protg,(t')

4)

(Pprot)
By definition of join on consistent labels, g¢1 v g C ge2 v ¢9’. Using induction hypotheses on the
premises of 3, we can use rule (Uprot) to derive:
I55g2vy vt U
5+ ge2 b prot, (') : U’ v g’

(Uprot)

For some U’, where U C U’. Using the premise of 4 and the definition of join we can infer that
UvgCU' vy
and the result holds.

Case (U®). Thent; =t{®t;and U; = Bool(q& . By (U®) we know that:

92)
T559c1 F 12 Booly,  T5+59c1 -ty : Booly,

.. 4 ! =
[isgakti@t;: Boo‘(glvgﬁ

(Ue)
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Consider g.; such that g.; T g.2 and t; such that #; T t,. By definition of term precision f, must
have the form t, = t;” @ t}’ and therefore

HEtY  HEt)
HoL ot ety

Using induction hypotheses on the premises of 5, we can use rule (U®) to derive:

(Po)

(6)

55902kt Boolgi Iige bty Boolgé
(Uo)

T Ft’@t) :Bool, ,~,
ge2 F 11 @1, (97vay)

Where g; C g;" and g; C g;'. Using the premise of 6 and the definition of type precision we can
infer that L Y~
(91 v93) E (91" v 95)

Bool, ,~ , C Bool
(91Vv93) (

97V 9y)
and the result holds.

Case (Uapp). Then t; = t] t; and U; = Uy, v g. By (Uapp) we know that:

A
Lige bt Un—gUiz Ti5gakty Uy

Uy < Uy 9V Jer < g; ™
Ti5ga bt ty:Uvg

Consider g.; such that g.; T g.2 and t; such that #; T t,. By definition of term precision f, must

have the form ¢, = t;’ t;’ and therefore

(Uapp)

HEY Tty
Hy oty

(®)

(Papp)

”

Using induction hypotheses on the premises of 7, T'; - gez + 1] : Uf;— ¢ U, and T3 gz + ) : Uy,

’ "

gC Je oy . .
where Uy C U,’, Ujy— 43Uy, C Uj;— 4 Ul,. By Lemma 4.10, U;” < Uf;. By definition of precision of

types, g, C g, and g C g’, therefore by Lemma 4.11, g’ v gc2 < g/'. Then we can use rule (Uapp)
to derive:

”

9c
[isgee bt 2 U—gUly  Tisge bty 2 Uy

U, s U}, 9"V ge2 < g/
L5592t ) Ul vy’

(Uapp)

Using the definition of type precision we can infer that
Unvg E U, v g’
and the result holds.

Case (Uif). Then t; = if t then t{ else t; and U; = (U] N UJ) v g. By (Uif) we know that:

I;:59c1 +t: Bool,
T Yagrt U T;59avgrt:U
wif) Jervghri by Je 9~ - 2 )
[;590 Fiftthent{elset, : (UG U)) v g
Consider g.; such that g.; T g.2 and t; such that #; T t,. By definition of term precision #, must
have the form t;, = if t’ then t;” else t;" and therefore
tCt' HEt Lot
if ¢t then ] else t; C if t’ then t] else t;

(Pif)

(10)
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Consider any ¢’ such that £ C ¢’. As g¢1 v g € ge2 v 9’ then we can use induction hypotheses on
the premises of 9 and derive:

I';559co + t' : Booly
T559c00vg vt U Tiug0vg Fty U

T;1ge v if ¢ then t] else £ - (UG UY) v g’

Uif)

Where U] C U/” and U; C U,’. Using the definition of type precision we can infer that
U/ VUV g EU VTV g’
and the result holds.
Case (U::). Then t; =t :: U;. By (U::) we know that:
;590 Ft:U/ U/ sy
Igakta=U U

Consider g.; such that g1 E g¢2 and ¢, such that #; E f,. By definition of term precision t, must
have the form t, = t’ :: U, and therefore

(U=)

(11)

tCt’ U LCU
o (12)
t=UCt =U,

Using induction hypotheses on the premises of 11, T;+; g, + ¢’ : U) where U/ E U;. We can use rule

(U::) and Lemma 4.10 to derive:

(P::)

[5902Ft U, U sU,
T;59c0kt Ut Uy

(U=)
Where U; C U, and the result holds.

Case (Uref). Then t; = refU t and U; = Ref,. U. By (Uref) we know that:

Tisge b t:U U SU  ge < label(U)
T;590 ¢ refU t : Ref, U

Consider g.; such that g.; T g¢.2 and t; such that #; C t;. By definition of term precision #, must
have the form t, = refU ¢’ and therefore

(Uref)

(13)

tCt’ vcu’
refU t CrefV ¢/

Using induction hypotheses on the premises of 13, we can use rule (Uref) and Lemma 4.10 and 4.12
to derive:

(Pref)

(14)

[;500Ft U U <U g < label(U’)
T;5902 ¢ refU" ¢/ : Ref, U’
Where U E U’ and U] C U/”. Using the the definition of type precision we can infer that

vcvu’
RefJ_ UcC RefJ_ U’

(Uref)

and the result holds.

Case (Uderef). Then t; = !t and U; = U v g. By (Uderef) we know that:
I55901 Ft:Ref, U

;590 1t:UYg

(Uderef)

(15)
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Consider g.; such that g.; T g.2 and t; such that #; T t,. By definition of term precision f, must
have the form t, = !’ and therefore
tCt’
(Pderef)W
Using induction hypotheses on the premises of 15, we can use rule (Uderef) to derive:
I559cFt":Refy U’

;090U Vg

(16)

(Uderef)

Where g C ¢’ and U C U’. Using the premise of 16 and the definition of type precision we can
infer that
UvgCU vy
and the result holds.
Case (Uasgn). Then t; = t{:=t; and U; = Unit,. By (Uasgn) we know that:
I559c 8 Refg Ul Ti590 bty US
U; s U{ gV ger < label(Uy)
T559c1 F t]:=t; : Unit,

(Uasgn)

(17)

Consider g.; such that g.; T g¢.2 and t; such that #; T t;. By definition of term precision #, must
have the form ¢, = t{":=t;’ and therefore

HEtH et
t:=t; C t/":=t)

(Pasgn) (18)

Using induction hypotheses on the premises of 17, I';-; gca F t{ : Refy U/ and I';59¢p + 85 = Uy,
where Ref, U/ C Refy U/” and U, C U,’. By definition of precision on types and Lemma 4.10,

Uy 5 U/”. Also, as, g E ¢’ and U] C U;’, by Lemma 4.11, g’ VW(U{). Then we can use
rule (Uasgn) to derive:

I59co bt s Refy UY Ti5gc00Fty: Uy’
U S0 e < b))
T;559c2 F t7:=t) : Unit,

Using the definition of type precision we can infer that

(Uasgn)

UnitJ_ [ UnitJ_

and the result holds.
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5 GRADUALIZING THE DYNAMIC SEMANTICS

In this section we present the formalization of the evidences for GSLgef. Section 5.1 presents the
structure of evidence and the abstraction and concretization functions. In section 5.2, we show
how to calculate the initial evidence. In particular we give definition for the initial evidence of
consistent judgments for labels and types. In section 5.2, we present how to evolve evidence. We
define the consistent transitivity operator, the meet operator and join of evidences. In section 5.4,
we present the algorithmic definitions of initial evidence and consistent transitivity. Finally, in
section 5.5, we present some of the proofs of the propositions for evidence presented.

5.1 Precise Evidence for Consistent Security Judgments

Definition 5.1 (Interval). An interval is a bounded unknown label [/, (] where ¢; is the upper
bound and ¢ is the lower bound.

1 € LaBEL?

1 u= [{,{] (interval)
Definition 5.2 (Interval Concretization). Lety, : LABEL? — P (LABEL) be defined as follows:

v.([(1.6:]) ={€ | € € LaBEL, {1 < € < {3}
We can only concretize valid intervals:
Definition 5.3 (Valid Gradual Label).
61 < {5
valid([ (1, (>])

Definition 5.4 (Label Evidence Concretization). Let
ye, : LaBEL* — P(LABEL?) be defined as follows:

Ve (G1.12)) = {0, ) | & € yi(1), 6o € . (12)}
Definition 5.5 (Interval Abstraction). Let  : P(LABEL) — LABEL? be defined as follows:
a,(0) is undefined
a,({1€: ) = [Al:.v(;] otherwise
Definition 5.6 (Label Evidence Abstraction). Let a., : #(LaBEL?) — LABEL* be defined as follows:
a.,(0) is undefined
o, ({0 G ) = ({0 ), (Lo ))) otherwise
Definition 5.7 (Type Evidence). An evidence type is a gradual type labeled with an interval:
E € GETYPE, 1 € LABEL?
E == Bool, | E—,>,E | Ref, E | Unit, (evidence types)
Definition 5.8 (Type Evidence Concretization). Let y: : GETYPE — P(TYPE) be defined as follows:
yz(Bool,) = {Booly | € € y,(1) }
ye(Ei—>, Ey) = )/ff(El))ﬁ))y,(n)Yﬁ(E:)
ve(Ref, E) = {Refe S| £ € y,(1),S € ye(E) }

where — is the set of all possible combinations of function types, using each member of the sets
obtained by the y; and y, functions.
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Definition 5.9 (Evidence Concretization). Let
Y., : GETyPE?* — P(TyPE?®) be defined as follows:

Ve, ((E1. Eo)) = {(51,52) | S1 € ye(E1), Sz € ye(E2)}

Definition 5.10 (Type Evidence Abstraction). Let the abstraction function ar : P(TyYPE) — GETYPE
be defined as:

ax({ Booly, }) = Bool,, (77

Cei a,({Lei }) —
ar({Sn—¢52)) =a:({S})) — , zpasSiz})

ar({Refe, Si}) = Ref, (7, ar({Si})
ar (§) is undefined otherwise
Definition 5.11 (Evidence Abstraction). Let . : P(TypE?) — GETyPE? be defined as follows:
a.(0) is undefined
a:({ (51,520 1) = ({51 ). @ ({52 ) otherwise

We can only abstract valid sets of security types, i.e. in which elements only defer by security

labels.
Definition 5.12 (Valid Type Sets).

valid({Si})  valid({Siz }) valid({ S; })

valid({ Booly, }) valid({ Ref¢, S; })

fci
valid({ Si1—¢,Si2 })

valid({ Unitg, })
PROPOSITION 5.13 (¢, 1S SOUND). If? is not empty, then ‘c v (e, (Z))
PROPOSITION 5.14 (ar, 1S OPTIMAL). If{? is not empty, and £ C Y. () then (Z) c .
PROPOSITION 5.15 (aty 1S SOUND). vaalid(g) then S C ve(ar (§)).

PROPOSITION 5.16 (ot 1S OPTIMAL). vaalid(§) and S C Ye(E) then ar (§) CE.
With concretization of security type, we can now define security type precision.

Definition 5.17 (Interval and Type Evidence Precision).
(1) 1, is less imprecise than 1,, notation 1; C 1,, if and only if y,, (1) C y., (12); inductively:
3 < € Oy < €y
(€1, 62] E [63,44]
(2) E; is less imprecise than E», notation £, E E», if and only if yz(E;) C yz(E); inductively:
E11EExn  EpCExp
utn nEn 1 E1 utop E;EEp
Bool,, C Bool,, Ref, E; C Ref,, £,

;
1 L,
Ey1—,E12 E Ez1—,Ex
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5.2 Initial evidence

With the definition of concretization and abstraction we can now define the initial evidence of
label ordering and subtyping:

Definition 5.18 (Initial Evidence of label ordering). Let F; : LABEL" — LABEL and F, : LABEL™
LABEL be functions over labels. The initial evidence of the judgment F;(g;) < F2(gj), notation
I[Fi(gi) < F2(g;)], is defined as follows:

I[F1 (g1, --~9Mb cGnim)] =
., ({CF (00, Fo(0)) 1 <C0) € Y™ (@Gipaymy)s
(t)) € Y™ @itner/m)) | Fi (i) < Fy(6))
Suppose F; = Fy;
Definition 5.19 (Initial Evidence of subtyping). Let F; : Typ” — TypE and F, : TYypE™ —
TypE be functions over types. The initial evidence of the judgment Flm), notation

I[F,(U;) <: F2(U))], is defined as follows:

g[[Fl(Ul, Un) <: Fg(Un+1, -~~Un+m)]] =
e, ({CF1(50), Fa(5))) 11(S0) € v§ Ui ymy)s
<S>€YS( n+1/m])|F1(S)<F2(S))
ProposITION 5.20. [Elaboration preserves typing] Consider I';3; gc + t : U then ifI; 259, + t ~>
t/:U,and ¢ = gé)(fc), thenT;3;eg. +t' U

Proor. Straightforward induction on type U. O

5.3 Evolving evidence: Consistent Transitivity

Now that we know how to extract initial evidence from consistent judgments, we need a way
to combine evidences to use during program evaluation, i.e. we need to find a way to evolve
evidence. We define consistent transitivity for label ordering and subtyping, o= and o' respectively,
to combine evidences as follows:

Definition 5.21 (Consistent transitivity for label ordering). Let function o~ : INTERVALZXINTERVAL? —
LABEL? be defined as:

(11.112) 0 (o1 100) = e, ({112 Lo2) € Yo, (G11.122)) | A € v, (112) Ny (121) €11 < AL < Loa))

PROPOSITION 5.22. Suppose ¢; + F1M) and ¢ + FZM).
Ife; o= ¢, is defined, then ¢ o= ¢, + F1(g7) < F3(gk)

PROPOSITION 5.23. y,(1; M 12) = y,(11) Ny, (12).
where 1 M1 = a(y (1) Ny(")).

PROPOSITION 5.24. (11,151) 0= (195,13) = AN (11,121 M 129, 13)

where
ANy, 13) = @ ({010 ) €y (ra19)) | Al € y,(12) .6 < Lo A by < €5))
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Definition 5.25 (Consistent transitivity for subtyping). Suppose

(E11. B v Fi(Uy) <: Fz(Uj) (E21, Eo2) + FZ(U]) <: F3(Ug)
We deduce evidence for consistent transitivity for subtyping:

(E11, E12) ©<* (Eg1, Eza) + Fl(ﬁi) < FS(ﬁk)
where o<* : ETYPE? X ETYPE? — ETYPE? is defined as:

(E11.E12) 05 (Eo1. Eo) = - ({(S11. S22) € yo ((E11. E22)) | 3S € ye(E12) Nyp(E21).S11 <t S AS <: Spa})

PROPOSITION 5.26. yr(E; M Ey) = ye(Er) Nye(Ey).
Then following AGT,
ProposITION 5.27.
(E1, Eo1) 0~ (Eag, B3y = A™(Ey, Egy M Egg, Es)
where
ASU(EL, Eoy E3) = . ({(51,93) € yo((E1, E3)) | ASy € y,(E2).Sy <: Sa A'Sy <: S3})
Definition 5.28 (Intervals join).
(61, L] v (63, 64] = [L1 v 3, L2 v €4]
Definition 5.29 (Evidence label join).

<l|,lz>§<l‘3~l1> = (1 le,lg ?m

Definition 5.30.
Bool,, v 1, = Bool(h%z)
1 ~ 12
Ei—, By vy = E1—>(,1§”)E2
Ref, Evi, = Ref(l&u) E

Definition 5.31.
<E|752>§<11~12> = (E; qll-Ez §12>

PROPOSITION 5.32. Ifes Uy S Uy and e F g1 < gz thenes Ve, F ULy 91 < Up ¥ 92

5.4 Algorithmic definitions

This section gives algorithmic definitions of consistent transitivity and initial evidence for label
ordering and subtyping.

5.4.1 Label Evidences.
Definition 5.33 (Intervals join).

(61, €2] ¥ [€3,€4] = [€1 v b3, €2 v {4]
Definition 5.34 (Intervals meet).

(€1, O] K [l3,€4] = [€1 A L3, b2 A Ly]
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Definition 5.35. Let F; : GLABEL" — GLABEL and F, : GLABEL™ — GLABEL. The initial evidence
for consistent judgment F;(g9;) < F2(gj) is defined as follows:

bounds(?

bounds({
bounds(x; v x2
bounds(x; A x2
bounds(x; M x,
bounds(F;(x;) v Fo(x7)
bounds(F; (x7) A Fo(x7)
bounds(F; (x7) M F>(x7)

) =[L.T]

) =[0./(]

) = bounds(x1) v bounds(x;)

) = bounds(x1) A bounds(x,)

) = bounds(x;) M bounds(xz)

) = bounds(F(x;)) v bounds(F,(x;
) = bounds(F,(x;)) A bounds(F5(x;
)

)
)
= bounds(Fl (fl)) M bounds( ( ))

bounds(F1(g;)) = [(1. (2]  bounds(F»(g;)) = [(].0}]

g(F1(91, gn) < F2(9n+1, ---gn+m)) = <[[I [3 A [é] [[1 Y [1, [g/]>

where F; : GLABEL" — GLABEL and F, : GLABEL™ — GLABEL.

IO(F(g1s s gn) = I(F(G1, - Gn) < F(g1, 15 9n)
The algorithmic definition of meet:

[[1.[3]“[[’;.“} = [[1\/[},.[2/\[\] ifvall'd([“\/[‘j.[g/\[]])

1 M 1" undefined otherwise

We calculate the algorithmic definition of AX:

{1 < {4 {3 < € {1 < ¥
AS([€1, 62], (€3, €4), [€5, L6]) = {[€1, €2 A s ALs), [€1 v C3 v U5, C6))

5.4.2 Type Evidences. We define a function liftP() to transform functions over types into func-
tions over labels. Also we define function invert() to invert the operator on types, used in the
domain and latent effect of function types. Finally we define function tomeet() to transform type
operators into meets, given the invariant property of references.

We start defining a pattern of operations:

Definition 5.36 (Operation pattern,).

PT € GParTERN, P! € LPATTERN

PT == _ | PT op” PT (pattern on types)
op?T == VAN (operations on types)
Pt == _ | Plopf PY (pattern on labels)
opt = v | AN (operations on labels)
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LfiP(L) = _
liftp(Pl v PI) = liftP(PT) v liftP(P))
lifgp(pl A PIY = liftp(PT) A liftP(P))
liftp(P Pl = Liftp(P]) N liftiP(P])
invert(_) =_
invert(PlT Vi PZT) invert(PlT) A invert(PzT)
invert(PlT A PZT) = invert(PlT) Vi invert(PzT)
invert(PlT m PZT ) invert(PlT ) invert(PZT )
tomeet(_) = _
tomeet(PlT Y, PZT) tomeet(PlT) mn tomeet(PzT)
tomeet(PlT A PZT) tomeet(PlT) n tomeet(PzT)
tomeet(PlT mn PZT) = tomeet(PlT) mn tomeet(PzT)

We use case-based analysis to calculate the algorithmic rules for the initial evidence of consistent
subtyping on gradual security types:

ITURP(GY) (&) <: iftP(G) ()] = (1. 12)

9[Gy(Booly,) < Gz(Bool,,)] = (Bool, , Bool,,)

Iinvert(G) Ty1) < imvert(G(Tn)] = (. £ I[Gi(Tiz) < Go(@)] = (F Fo)
g[[liftP(Gl)M(Gz)(fT'l)]] = (11, 112)
IliftP(invert(G,)) (77z) <: liftP(invert(Gy))(Ta)] = (1. 121)

gi 9j2 . I L 2 !
g[[Gl(Uil_z)gilUiZ) < Gz(Uﬂ;’gﬂsz)ﬂ = (E11—,, E12, E21—,,E22)

I[HP(G) @) <: WP(Go) @] = (1.12)
9[tomeet(G1)(U;) <: tomeet(G2)(U;)] = (E1, Ex)
J[[tomeet(G,)(U;) <: tomeet(G)(U;)] = (E}.E})

I[G1(Refy, Uy) <: Ga(Ref,, Uj)] = (Ref, Ey M E],Ref,, E; M E))

where G; : GLABEL" — GLABEL and G, : GLABEL™ — GLABEL, and Gy (1, ..., X,) = P{ (x1, ..., Xp),
Go(X1,y o0y Xp) = PZT(xl, ey X))

9O (F(Ur, . Up)) = I[F(Ur, ... Un) <: F(Us, .., Up)]
We calculate a recursive meet operator for gradual types:
Bool, M Bool,, = Bool,
(Eii—>, F12) M (lel—:h; Ep) = (En M le)ﬂmq (E12 M Ez)
Ref, E; M Ref,» E;, = Ref,n E1 M E,
U MU’ undefined otherwise

We calculate a recursive definition for A<' by case analysis on the structure of the second
argument,
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AN (Esy, Eory E) = (ES, Bl
AS(Ero, Ego, Esp) = (E7,, Efy)
AS(11,12,15) = (1, 13)
AN (11, 12,15) = (1], 1) A= (113, 112, 111) = (135 117)

A<'(Bool,,, Bool,,, Bool,,) = (Bool,/, Bool,; )

111 112 113
<:
AN (Ey1—1,E12, Eyi—1,Ea2, E31—, E3p)
,

I Us
— ’ ’ ’ ’
= (Ef; ’I{Elstsl ’1;E32>

AR (11,12, 13) = (1], 14)
E{ZElﬂEg Eiﬁ):Ez |_|E3
A< (Ref,, Eq,Ref,, E;, Ref,, E5) = (Ref,l E1, Ref,; EL)

5.4.3 Evidence inversion functions. The evidence inversion functions are defined as follows
ilbl((Bool,,, Bool,,)) = (11.12)
ilbl((Unit,,, Unit,,)) = (11,12)
ilbl((Ref,, Uy, Ref,, Uz)) = (11,12)

bI((E, 5, Fo El— ED) = (1)

iref((Ref,L El. Ref,_, Ez>) = <E1.E2>
iref ((E1, E,)) = undefined otherwise

idom((Ey—,, Es, E{—, E)) = (E{. Ey)
idom({E1, E»)) = undefined otherwise

icod((E\ 2, By, B~ E)) = (Ey. Ey)
icod((E1, E»)) = undefined otherwise
5.5 Proofs
PROPOSITION 5.13 (¢, 1S SOUND). If? is not empty, then ‘c v (e, (2’\)),
PRrROOF. Suppose r= {€; ). By definition of a,,, a, ({ € }) = [Ali.v(;]. Therefore
(@ (G 1) = {€ | £ e LasL, AT < € < vT})
And it is easy to see that if £ € {£; }, then € € y,(a,({ £; })), and therefore the result holds. m]

PROPOSITION 5.14 (a, 1S OPTIMAL). Ift? is not empty, and £ C Y. (1) then (2) c .

ProoF. By case analysis on the structure of 1. If 1 = [(1, (5], y., (1) = {€ | € € LABEL, {; < € < {3};
¢t C{t | € e LaBeL, ¢y < € < {p},¢ # 0 implies a,,(€) = [(3,(,], where £{; < {3 and {4 < {3,
therefore [(5. (4] E 1 (if € = 0, a,, (£) is undefined). O

PROPOSITION 5.15 (ar; Is SOUND). vaalid(g) then S C YE (aﬁ(g\)).
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Proo¥. By well-founded induction on S. Similar to Prop 4.4. O

PROPOSITION 5.16 (at; 1s OPTIMAL). vaalid(g) and S € ve(E) then ar (§) EE.
Proor. By induction on the structure of U. Similar to Prop 4.5. O
PROPOSITION 5.23. y,(1; M12) = y,(11) Ny, (12).

ProoF.
yi(ine) =y(a(y()Ny.(1)))
Cy.() Ny (11) (soundness of ;)

Let £ € y,(11) Ny, (11). We now that y,(1; M 1,) is defined. Suppose 1; = [(1,{,] and 1, = [{3, (4].
Therefore 1, M1, = [{1 v (3,5 Aly].

But y,(11) Ny, (1) ={€ | € € LaBeL,{; < € < Lo} N{{ | € € LaBEL, {5 < £ < {4}. Which is
equivalent to {¢ | € € LABEL, {1 < £ < {, A {3 < £ < {4}, equivalent to {¢ | € € LABEL,¢; v {5 <
€ < {y A €y}. Which is by definition y, ([(; v (5, {, A {4]), and the result holds.

O
PROPOSITION 5.24. (11, 151) 0= (199,13) = AN (11,121 M 129, 13)
Proor. Follows directly from the definition of consistent transitivity and Prop 5.23. O
PROPOSITION 5.26. yr(E; M Ey) = ye(Er) Nye(E,).
Proor. By induction on evidence types ¢; and ¢, and Prop 5.23. O
PrOPOSITION 5.27.
(E1, Eg1) 0~ (Eo, Es)y = A~ (Ey, Eoy M Eyy, Es)
where
AS(E By Bs) = a({(51.55) € y. ((E1. E3)) | ASz € y,(E2).51 <: Sa A Sy <: S3))
Proor. Follows directly from the definition of consistent transitivity and Prop 5.26. O

PROPOSITION 5.32. Ifes Uy S Uy andej v g1 < ga thenesv e v Uiy g1 <t Ua Y g2

Proor. By induction on types U; and Us,, using the definition of J.. and Proposition 5.43. O

ProrosiTION 5.37. [[1 [J] Y [[3. [1] = [[1 Y [3. [2 Y [1]

Proor. Follows directly by definition of y and v. O

ProrosiTION 5.38.
(1,12) ¥ (11, 15) = (11 v 11,12 v 1)

Proor. Follows directly from the definition of consistent join monotonicity and Prop 5.37. O

PROPOSITION 5.39.
[Cr. )M [l b = [Cov ls, Lo ALy ifli vl < €y Ay
1 11" undefined otherwise
Proor. By definition of meet:
[N G ] = a ({018 €y ([0 1) Ny (6. 6D

But by definition of intersection on intervals, y ([ {1, (2]) Ny ([£5, L4]) = y([(1 v C5, (o ALa]) if €1 v 5
€ A €4 (otherwise the intersection is empty), and the result follows by definition of «,. O

A
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ProrosITION 5.40.
0 <4, {3 < g 0 < ¥
AS([€1, 62], (€3, €4), [€5, L6]) = {[€1, €2 A s A s, [€1 v C3 v U5, C6))

ProoF. By definition:
A 6], [C5. La), (652 L6)) = e (W1 05y € yo (U L1, ), [ 65, G 1)) | 36 € yi([C5. La]) .65 < €5 < 65))

It is easy to see that o, ({ €1; }) = [(1. (], ], for some {],. We know that {1, < {3, {1, < {4 and 812 < &,
ie. €]y < by Ay M. But €3 A €4 A s < €4 < € therefore

<[2 A [4 A [()7 [(>> € {<[;~ [’,;> € Y#(<|:[1~[2]' [[55[()]>) |
3G ey ([0 L)L) < G < 6)

and by definition of a,, €3 A €4 A € < €15, then o, ({€1;}) = [(1, (5 A L4 A (4], Similar argument is
used to prove that o, ({ €5; }) = [(1 v (5 v (5, (6] O

LEMMA 5.41. Let {; € LABEL, then (€1 Als) v (€3 ALy) < (€1 v €3) A (€2 v y).

Proor.

(51 A 52) Y (53 A 54)

(b1 v (LA L)) A (Lo v (E3 A Ly))

(€1 v €3) A(€r v €a)) A (L2 v U3) A (L2 v E4))
(61 v €3) A (L2 v y)

AN N A

PROPOSITION 5.42. Suppose ¢ + FIM) and ¢, + FZM).
Ife; o= &, is defined, then ¢, o= &, v Fi(g;) < F5(9%)

ProoOF. Suppose ¢; = (131, 112) and €, = (121, 122). Then by definition of initial evidence:

(r112) = (6. ) [, 6]) E IR @) < B@)] = 0110
and
(121, 122) =[5, 6], [€7, 6s]) E g[[Fzmn] = (151 15)
Suppose that g[[ﬂm )] = (i}, 1}). We have to prove that (1, 115) 0= (151, 120) E (1], 1).
If bounds(Fy(g;)) = [(1.0}], bounds(Fy(g;)) = [(5.(.], and bounds(F5(g;)) = [(%,(]] We know

that I[F1(77) < Fo(@)] = ([(/. 0} AL}). (6] v (1. ]]). Therefore €] < €1, €y < €y A &\ € < €
and {4 < .

Using the same argument,
I[F:(g5) < Fs(g)] = (5. 0L A L) [0 v L, CL]). Therefore €5 < €5, € < €4 A, €5 v €4 < €7 and
ts < €.

But I[Fi(g:) < F3(gx)] = (1. (AL [0 v (4. £(]) and

(111, l12) o™ (121, 122) = A<(111,112 M 121,122) =
A¥([61, 62, [l v U5, Ly A s), [ 7. €5))
= ([0, O N AL N [0y Us v Us v (g, (g])
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we need to prove that

([, o NN Cg A ) [Eo v b v s v (7. 0s]) E
(URANARRT AR
. But we know that £] < {;. Also that £, < {; A {; and therefore {, < ;. The same for {; < {; and
therefore €3 A Cy Als Ay < €y A€, 1e. [(1. 60 Ay Ao Als] E [(], ) AL]]. The argument is applied
for the second components and the result holds.
O

PrOPOSITION 5.43.  Suppose ¢; + FHME) and ¢, + lefqﬁ-)??zg/(@)
Then ¢, v & v F11(g7) v F21(97) < Fi2(77) v Fa2(35)

Proor. By definition of initial evidence noticing that ¢, v ¢, can be more precise than the initial
evidence of judgment
Suppose ¢; = ([(1. (5], [(5.(4]),and &5 = ([£5. (o], [ (7. Ls]), theneyve, = ([0 v U5, Loy ()L [5 v Lo, Loy Ls]).

If bounds(F11(g:)) = [[1,1. (11, ], bounds(Fi2(g:)) = [(1,1. (., bounds(F1(g:)) = [(7,,.0};,] and
bounds(Fy(g:)) = [, (50,
We know that I[Fi1(g7) < Fi2(G7)] = ({111,010 AL, [0 v o1 (15, ]). Therefore €], < &,
by < Uy Algg, €111 v €151 < €3 and €4 < £{,,. Using the same argument, J[Fz(g7) < Fo2(957)] =
L 00 Mo L0y v £, 005, 1). Therefore €3,y < €5, €6 < €a1p A €ogp, €1y v {3y < €7 and
Uy < L5y

But the I[F](g7) < F3(g;)] = ([(1. (5 AL (6] v (4. 0]]) where
bounds(F{(gi)) = bounds(F11(gi))vbounds(F21(g:)) = [(1,1. (1o V[0 Con ]l = [0 v 0 G v O
and
bounds(F;(gi)) = bounds(F12(gi))vbounds(Fo2(9:)) = [(101. (1o V[0 Chon ]l = [0 v L0 Clon v .

We need to prove that [(1 v (5,05 v (o] T [£1 v .0l v U], de €141 v €517 < €1 v €5 and
to v s < €115 v U5 But £1y; < € and €5, < {s, therefore {1, v €5, < &y v {5. Similarly, as
ly < l]1y Aliy and € < 515 A €y, then €y v €6 < €115 v €5y Therefore [ v (5.0, v (] E
(€111 ¥ 2115 1 ¥ Coy2]

Using analogous argument, we also know that [(5 v (s, (s v (3] T [(1,, v (55, (15, v (5,,]. There-
fore ¢, v &, € I[[F{(g;) < F}(g;)], and the result holds.

O

LEMMA 5.44. Let S;, S, € TYpE. Then

(1) If (51 ¥ S2) is defined then S; <: (51 ¥V S2).
(2) If (S1 1\ S2) is defined then (S1 A S2) <: S1.

Proor. We start by proving (1) assuming that (S; v S;) is defined. We proceed by case analysis
on S;.

Case (Booly). If S; = Boolg, then as (S; ¥ Sz) is defined then S, must have the form Bool,, for some
5. Therefore (S; ¥/ S2) = Boolg,y¢,). But by definition of <, £; < ({1 v {2) and therefore we use
(<:Bool) to conclude that Booly, <: Bool(z,ye,), i.e. S <: (51 ¥ S2).

Case (S —¢ S). If S; = S11 —¢, S12 thenas (51¥Sz) is defined then S, must have the form Sy; —¢, Sz2
for some Ss;, S5 and 5.
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We also know that (51 ¥ S2) = (S11 2 Sa1) = (e,ve,) (S12 2 S22). By definition of <, £1 < (€1 v £2).
Also, as (S; V Sz) is defined then (S1; A Sy1) is defined. Using the induction hypothesis of (2)
on Si1, (S11 A S21) <: S11. Also, using the induction hypothesis of (1) on S;2 we also know that
S12 <: (81272 S22). Then by (<:,) we can conclude that S1; —¢, Sz <: (S112S21) =2,y (S1272S22),
ie S; <: (S1VSy).

The proof of (2) is similar to (1) but using the argument that
(51 A 52) < . [m}

LEMMA 5.45. LetS € TypE and € € LABEL. Then S <: S v ¢.

Proor. Straigthforward case analysis on type S using the fact that £ < (¢’ v ) forany ¢’. O

LEMMA 5.46. Let S1,S, € TYPE such that S; <: Sy, and let €1, €y € LABEL such that €; < {5. Then
Sivt <:Syv s

Proor. Straightforward case analysis on type S using the definition of label stamping on types.
[m]

6 GSLg.: DYNAMIC PROPERTIES

Notice that for convenience, the proofs and properties are defined over intrinsic terms [Garcia et al.
2016] instead of terms of the internal language. They are actually the same as terms of the internal
language, but keeping all static annotations explicitly. First we introduce the static semantics of
intrinsic terms in Sec. 6.1. Their dynamic semantics in Sec. 6.2. The relation between intrinsic and
evidence-augmented terms in Sec. 6.3. Then the proof of type safety is presented Sec. 6.4, the proof
of dynamic gradual guarantee for GSLg without the specific check in rule (r7) in section 6.5, and
the proof of noninterference in Sec. 6.6.

6.1 Intrinsic Terms: Static Semantics

Following Garcia et al. [2016], we develop intrinsically typed terms [Church 1940]: a term notation
for gradual type derivations. These terms serve as our internal language for dynamic semantics:
they play the same role that cast calculi play in typical presentations of gradual typing [Siek and
Taha 2006]. Intrinsically-typed terms tY comprise a family T[U] of type-indexed sets, such that
ill-typed terms do not exist. They are built up from disjoint families xV € V[U] and oV € L[U] of
intrinsically typed variables and locations respectively. Unless required, we omit the type exponent
on intrinsic terms, writing f € T[U].

To each typing rule corresponds an intrinsic term formation rule that captures all the information
needed to ensure that an intrinsic term is isomorphic to a typing derivation. Because intrinsic
variables and locations reflect their typings, intrinsic terms do not need explicit type environments
I or store environments 3; however, the typing judgment depends on a security effect ¢., which
intrinsic terms must account for.

Additionally, because intrinsic terms represent typing derivations of programs as they reduce,
they must account for the possibility that runtime values have more precise types than those used
in the original typing derivation. For instance, the term in function position of an application can
be a subtype of the function type used to type-check the program originally. The formation rule of
the application intrinsic term must permit this extra subtyping leeway, justified by evidence. The
same holds for the security information. Therefore, an intrinsic term has the general form ¢ » {
, where the context information ¢ = (¢g.. g.) contains the static program counter label g. used



Type-Driven Gradual Security with References: Complete Definitions and Proofs 57

¢ € EVIDENCE, et € EVTERM, ev € EVVALUE, v € VALUE,
u € SIMPLEVALUE, g € EVFRAME, f € TMFRAME

u == xU by | (WxU.D), Iog | unity o
v u= uleu=U e u= (E1,Ep) | (1,12)
w= hfe et = ¢t
! _ N U ev = cu
pgoo= e|luo’ o P
p o= xU oV el = &g
q = plepuU ¢ u= (e9.0)
h == O@%et|evedO| D@f.] et | ev@f] o|a:U|if? Othen et else et

U gU U U 9.U (7.
| "Yolo=.et|evi=.0]ref, O] protey, ¢'(ct)

Fig. 23. GSLgef: Syntax of the Intrinsic Term Language

to type-check the source term, as well as the runtime program counter label g., along with the
evidence ¢ + g. < g.." For simplicity we define accessors ¢.g. £ g.,¢.g. = gc, and ¢.c £ ¢,

Figure 23, presents the syntax of intrinsic terms. Fig. 24 presents the intrinsic terms formation
rules for GSLges. In rule (Iprot), labels g and g’ represent the static and dynamic information of the
label used to increase the program counter label in the subterm, respectively. Evidence ¢; justifies
that the type of the subterm is a consistent subtype of U, the static type of the subterm. ¢’ represents
the context information associated to the subterm #: ¢/g. (resp. ¢’g.) is the program counter label
used to typecheck (resp. evaluate) .

In the intrinsic term formation rule for applications (Iapp), U; is the runtime type of the function
term. We annotate the initial static type information with @. The evidence ¢, for the label ordering
premise is also annotated, since it is needed to reconstruct the derivation. The intrinsic term of a
conditional, described in Rule (Iif)?, carries the static information of the label of the conditional
term g. The context information ¢’ used for both branches is obtained by joining the term context
¢ point-wise with the evidence and labels associated with the consistent subtyping judgment of
the conditional. Evidences ¢, and ¢ justify that the type of each branch is a consistent subtype of
the join of both types. Finally, rule (Iassgn) is built similarly to the application rule (Iapp).

6.2 Intrinsic Terms: Dynamic Semantics

Next we present the full definition of the intrinsic reduction rules in Figure 25, and the full definition
of notions of intrinsic reduction in Figure 26.
Because the security context information of a term is maintained at each step, we also adopt the

lightweight notation f; | 4 li f5 | pa, to denote the reduction of the intrinsic term ¢ » f; € T[U]
in store y; to the intrinsic term ¢ » £, € T[U] in store y;. We note C[U] the combination of a term
f € T[U] (without context) and a store y. Function applications reduce to to an error if consistent
transitivity fails to justify U, <: Up; . Conditionals similarly reduce to a new prot term, which is
constructed using the static and dynamic information of the conditional term. Assignments may
reduce to an ascribed unit value. Similarly to references, the stored value is ascribed the statically
determined type U. Therefore consistent transitivity may fail to justify that the actual type of the

IWe use color to make distinctions when is needed: green is for effects and static information; orange is for the runtime
information of the security effect.

2Evidence inversion functions (idom, icod, iref, ilbl and ilat) manifest the evidence for the inversion principles on con-
sistent subtyping judgments; e.g. starting from the evidence that U; < U, ilbl produces the evidence of the judgment
label(Uy) < label(Uy).
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(Ix)——————————— (Ib) (Iu)

¢ xY e T[U] ¢ > by € T[Booly] ¢ > unity € T[Unit,]
) (1) $'=(0'9) ¢rieTls] crg'<yg
U , ; g
(ﬁ > Og € T[Refg U] ¢ > (/1‘7 xUl.t)g € T[Uli’gUZ]
¢/ >ie T[U’'] o> f1 e T[U1] a kU S BOOlg1
HRU SU kg’ <y ¢viy € T[Uz] e + Uz < Booly,
(Iprot) U — (Ie) y = N
¢ > prot; ‘g/¢ (e11) € T[U v ¢] ¢r el @IV ook € T[BOOIglvgz]
o g S —
(12pp) prii € T[U)]] e v Uy SUn—4gUz e+l sUn  askdgevg<yg’
app -
. Un-,Us ~
prafhh @, " ek € T[Uz v g]

¢ i € T[U] ¢1 +Up < Booly ¢’ = ¢ v (ilbl(e1), label(U7), g)
' oiz € T[] kU sUaVUs @' ois e T[Us] o5+ Us S Uz Us

" ¢ > if9 e1f; then eofy else esfs € T[(Un v Us) ¥ 9]
¢-ieTU] _ pvieTU']
e arU sU ek ¢.ge < label(U) et cFU’ < Refy U
¢ v refU o1 € T[Ref, U] ¢o 1Rl Ui e TUT g]
¢ >t € T[Refy Uf] ‘1 ¥ Refy U] 5 Refy Uy 5ol et
(Lassgn) pri e T[Uh] ©rUzsUi &3k dugev g < label(Uy) " i U < Us
g eify 2L ey € T[Unit, ] §o ek Uy € T[US]

Fig. 24. GSLgef: Gradual Intrinsic Terms

stored value is a subtype of U. As the value is stamped with actual labels, the term may also reduce

to an error if consistent transitivity cannot support the judgment ¢.g. v € < U.

6.3 Relating Intrinsic and Evidence-augmented Terms

In this section we present the translation rules from GSLg.f terms to intrinsic terms in Figure 27. Also
this section presents the erasure function in in Figure 28—highlighting the syntactics differences
between terms in gray—along properties that relates evidence-augmented terms and intrinsic terms.

In particular we identify four important properties. First, that given a source language the
erasure of the translation to intrinsic term is equal to the translation of the source term to an
evidence-augmented term:

PROPOSITION 6.1. IfT;3;9. +t~> £ : U andT;Z;gc Ft~> t/ 2 U, then|f| = t'.
Proor. By induction on the type derivation of t. O

Second, given a reducible intrinsic term i, if it reduces to an error, then it erasure also reduces to
an error; or, if reduces to an intrinsic term #, then the erasure of ¢’ also reduces to the erasure of ':

PROPOSITION 6.2. Consider ¢ = cg., ¢ >t € T[U], and -;Z;¢g. v t : U, such that 2 |= Hy.
Then if f = t and p, = p then either
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nix C[U] x (C[U] U { error })
U 4 X 9 . ’
Re) tY |p — r reC[U]U({error} ®F) Hhlp —ilp
¢ y [ ,
tV g —r fladlp — fl2] |l p
(Rprof) hlp — oy ®h) et — . et’
; ¢ ; ¢
prot,, ¢’ (¢f1) | u + prot,, ¢’ (¢f2) | p’ hlet] | p + hlet’] |y’
, . ¢
et — . et t|p +— error
(Rproth) p (Rferr)
prot,, ¢’ (et) | p + prot, ¢’ (et’) | p’ flf]| ¢ +— error
et —>. error f|p —> error
(Rherr) (Rproterr)
¢ , oy ¢
hlet] | g + error prot,, ¢’ (¢t) | p +— error

et — . error

(Rprotherr)
, ¢
prot,, ¢’ (et) | p +— error

Fig. 25. GSLges: Intrinsic Reduction

v . v £9c¢ v
o iy =t | pp = Nt |l = 1E1 ] |ps3l, or
. é .
e t|p, + error = |t| | |y,|error
ProoF. By induction on the type derivation of f.

Case (I:). Then { = £ :: U and by (E:), t = ¢’ for some ¢’ such that = t’. Suppose that
¢; F U’ < U. By inspection on the type derivations, ¢ > i’ € T[U']and ;3;eg. F ¢ : U’.

Let us suppose that i’ | y, 2y " | pz, then by induction hypothesis ¢’ | p, S 1| ub and
" =t"” and p{ = pj. Then &&= U |y, 2 et = U | py and &t | p, S et | 15 But as
i = py, and by (E::) £1#” : U = £,t”, the result holds.

Let us suppose now that ’ = su = U’. Then as ’ = t’, ¢’ = &u’, for some v’ such that
u = u'. If &, 0= ¢ is not defined the result holds immediately. Suppose ¢, o< ¢ = ¢/, then

’ ¢ ’ ’ e,
e(eou=U) 2U |y, V— uzU| pyand ¢i(eou’) | py +—— ¢'u’ | pp. But as iy = pip, and by (E::)
c'u U = ¢'u’, the result holds.
Ifi = u,thenas '’ = t/,t' = e,u’, for some u’ such that u = v’, and the result holds immediately.

The other cases proceed analogous. O

Fourth, if an intrinsic term type checks, then its erasure also type checks to the same type.
PROPOSITION 6.3. Consider ¢ > € T[U] then, forT |= { and . |= {,T;%; || v |£] : U.

ProoF. By induction on the type derivation of f. O
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Notions of Reduction

i» : C[U] x (C[U] U { error})

$ ~
A"l(bl)gl &7 é‘g(bz)gz g — (1 ve)r [[@]] bZ)(glf\\//gz) i Boolg | p

¢ ~ ~ -
prot!: L' (c1u) | 1 — (117 )V g) = UVglp

’

g 91, U . *
ol g {prot;’l;,,(,i>gz¢'<wod<u><[<«u  Unn) XU 1)) | g

t'l(lgéxUll.t*)gZ @ eulp —

error if ¢ or ¢/ are not defined
where ¢ =) o< idom(e;), ¢ = (¢>e$ ilbl(s1)) o= g3 0% ilat(e1)
and ¢’ = (/. d.gc ¥ 92. 9))

€3

» ¢ 9. U
ifd c1trueg, then é‘giUz else z';;tU3 | Ii — protﬁbl(l])m(ﬁ'(zztUz)|~p
where ¢’ = (p.c v ilbl(e1), p.gc v g1, ¢.gc v g)and U = (U ¥ Us)

if? ¢ falsey, then e tU2 else e5tU3 | U i> protﬁ’,}ll](fl)gld’/(flﬁUS) | p
where ¢’ = (¢.c Y ilbl(c1). ¢.gc ¥ 1. d.ge v 9) and U = (U v Us)

U ¢ [0V | uloY - ¢ (uv ¢.g0) :: U]l where oV ¢ dom(y)
ref;, cu|p — . < ..
error if (¢.c o™ ¢/) is not defined
where ¢/ = ¢V (¢p.c 0= &)
U’ ¢ .U ‘(i .
0y | y, — prOtilbl(:‘)g'(ﬁ (iref (¢)v)
where (oY) =vand ¢’ = (p.eVilbl(s), ¢.gc ¥ 9'. d.8cV )

|Refy U,

unit | p[o¥ = &'V ($.2:V 9)) = U]
eu | p — ( error if ¢/ is not defined, or
¢.c | <] ilbl(¢) does not hold
where ¢ = (¢5 0= iref(¢1)) ¥ (($.£ ¥ ilbl(1)) o= 5 o= ilbl(iref (¢1))
and (oY) = eu’ = U

u 74

f‘lOg £

—¢: EVTERM X (EVTERM U { error })

(2205 1)V

error if not defined

e1(epv = U) —¢ {

([0 L), (O G LS L1005 = 63 <8

Fig. 26. GSLges: Intrinsic Notions of Reduction

Finally, if an evidence-augmented term type checks, then there must exists some intrinsic term
that have the same type and that it erasure is the original evidence-augmented term.

PROPOSITION 6.4. Consider T;%;egc v t : U. Then 3f,A$ such that |f| = t and |¢p| = ¢g. and
¢vieT[U]

Proor. By induction on the type derivation of ¢.
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F;Z;gcl-t'\»f:U

(T%) =0 (Th)
X
F;Z;gcl—x'\»xU:U I;%gc v by ~ by : Booly

. - ;%9 rt~> iUy
(T) 290 + unitg ~ unitg : Unitg (T4

’

I35 g0 - (A9 x : Up.t)g ~ (Ag’xUl.E)g : Uli)gUz

;3590 bt~ b Booly, TI;X;gct+t2~ iy Booly,

1 = Y<.(Booly,, Booly, ) £ = Y<.(Boolg,, Booly,)
(To®) =
L3 e @IVI2 o . ~
[Zigeb 1@t~ 111 @ oty e BOOIgl\/gz
; g y
F;Z;gc Fip~ 1 U11—>gU12 T; Z;gc iy~ tp: Uy
g/
o1 =90 (Un—gU2) e =9<(Ua,Un1) ¢35 = 9<(gc, 9.9")
(Tapp) R
. Ul Un ~
F;E;gc F ity ~> ety @‘L\;H—>‘ 12 eoty : Upp Yg

;% gcrti~>bH U gl=9evg DiSiglvta~ob:Uy TiSglvts~i3:Us

i ¢1 = Y<.(Uy, Booly) e = J<.(Uz, Ua, U3) 3 = J<.(Us, Uz, Us)
L ~ ~

T;3;gc b if t1 then t; else t5 ~ if7 £f; then )i else e3f3: (U v Us) v g

F;Z;gcl—tl«»fl:Rengl T390 Fty ~ By : U
& = gg(Refg U1) &y = g<;(U2, U1) &3 = gg(gc,g, label(Ul))
(Tassgn) 7
T;%;9c F t1i=ty ~ e1h ‘(7:.:1,; eoty  Unit
[iSge bt i: U r;Z;gCFth:Reng

e =9..(U,U) & F I<(ge, label(U)) &= ﬂg(Refg U)

(Tref) = (T deref) - —
I3 90+ refU t ~ ref,U, et : Ref L U 3901t~ 1Refy U . Uvyg
) [Sgckt~1:U e =094(U,Up)

;%9 FtUp~ cf 2 Uy : U

where 9% (9) = 9<(g,9) and IE(U) = 9-.(U,U)

Fig. 27. GSLgef: translation to GSLgef intrinsic terms

Case (¢'t"). Then t = ¢'t’, for some ¢',t’. But we know that T;X;¢g. + ¢'t’ : U and suppose
¢ rU sUandet g, S g - Then by choosing ¢ = (¢, 9.)g.” and induction hypothesis on ¢/, 3
such that ¢ » £’ € T[U’].

The other cases proceed analogous. O

LEMMA 6.5. Consider ¢ » i1 € T[U]. If{; C f, then || C |£,].

Proor. By induction on the type derivation of ; and the definition of ||. O

LEMMA 6.6. Consider ¢ » i € T[U]. If |{;| T t;, then Ak,, such that f; T I, and that || = t,.
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(Ex)——— (Eb)

Eu)—————— Eo)———
U= x byl = by (Ew) (Eo)—

lunity| = unit, lo

il =t 1¢"] = c292 || =

(EA - ~ - ~ (Eprot)
[(A9'xYrd)| = (A9 x : Uy ),

91> U .
lprot, g, ¢ (e38) = prot, o c2g2(e3t)

E£®) lf1] =t lEo| = ta (Eapp) il = t;
lerty @919 eofa| = ety @ ety y U]li’qulz .
ety @, —  e2be] = a1t @, 2t
) ] = t; l{ =t
(Eif) — " - - - (Eref) —
[if 7 £1t; then eofy else e3t3| = if £1t1 then )ty else 313 |refy et = refg et
i =t |t =t =1t
(Ederef) ——MM (Eassgn) E)———
PRefo U cf) = 1ot T let = Uz = et
le1ty = o eota] = 1ty 1=ey 212
[l = g IxU|=x ] =2’ e A=
DED U ol = , SOgN=g
gy, x¥ ol =pyx >0

Fig. 28. GSL;ef: Equivalence between intrinsic terms and evidence-augmented terms

Proor. By induction on f; and the definition of ||.

Case (I:). Then f; = ¢§] = U, and |f;| = ¢|f]|. By definition of T, t, has the form ,t}, where
&, C & and |{]| C t;. By induction hypothesis, 3£, such that ] C £, and that |;| = ;. By definition
of evidence, we can build the term &} = ?, but we know that ¢f] = U C &f; = ? and that
leo8) 2 2| = 58] = eot, and the result holds.

The other cases proceed analogous. O

6.4 Type Safety

In this section we present the proof of type safety for GSLgef.

We define what it means for a store to be well typed with respect to a term. Informally, all free
locations of a term and of the contents of the store must be defined in the domain of that store.
Also, the store must preserve types between intrinsic locations and underlying values.

Definition 6.7 (u is well typed). A store y is said to be well typed with respect to an intrinsic term
,written ¢tV u, if

(1) freeLocs(tV) € dom(y), and

(2) Yv e cod(u),v + pand

(3) ¥ oY € dom(u),¥¢, then ¢ > p(oV) € T[U].

U

LEMMA 6.8. Suppose ¢ > tU € T[U], then Vg/,¥¢,, such that g, < ¢.g. and ¢/ + g. < ¢.g.,
¢’ =(clg].¢.g.) then ¢’ >tV € T[U].

Proor. By induction on the derivation of ¢ > tV € T[U]. Noticing that no typing derivation
depends on ¢/ g/, save for the judgement ¢/ g, < g. which is premise of this lemma. O

LEMMA 6.9. Suppose ¢ > v € T[U], thenV¢’, then ¢’ > v € T[U].
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Proor. By induction on the derivation of ¢’ » v observing that for values, there is no premise
that depends on the security effect. O

LEMMA 6.10 (CANONICAL FORMS). Consider a value v € T[U]. Then eitherv = u, orv = cu = U
withu € T[U’] and ¢ + U’ < U. Furthermore:

(1) IfU = Bool, then either v = b, orv = by :: Bool, with by € T[Booly] and ¢ + Booly <
Bool,.

2) IfU = Ulg—c>gU2 then either v = (AF’CXUl.tUZ)g with t% € T[Uy] orv = z‘(Agéfo.tUz/)g/ :
U255, Uy with tU € T[UJ] and ¢ - U{~5, Uf < Uy, U,

(3) If U = Ref, U, then either v = ogl orv = ;‘of]]} i Refy, Uy with o;],‘ € Refy Ul and ¢ +
Ref, U{ < Ref, U;.

Proor. By direct inspection of the formation rules of gradual intrinsic terms (Figure 24). O

LEMMA 6.11 (SUBSTITUTION). If¢ vtV € T[U] and ¢ > v € T[U;],then ¢ > [v/x"1]tV € T[U].
ProOF. By induction on the derivation of ¢ > tV. O

PROPOSITION 6.12 (—> 1s WELL DEFINED). IftV | g — r andtV v y, thenr € CoNFIGy U{ error }
and ifr = t'V | y’ € ConriGy then also t'V v p’ and dom(u) C dom(u”).

ProOF. By induction on the structure of a derivation of t” | y — r, considering the last rule
used in the derivation.

Case (1®). Then tY = by, @7 byy,. By construction we can suppose that g = g; v g, then

perdge < P.ge

¢ > by, € Booly, &1+ Bool,, < Booly

¢ > by, € Booly, &+ Booly, < Boolgé
g

> eibig, ®7 e2byy, € T[Bool

(I®)
Therefore
e1(b1)g, &7 e2(b2)g, |
¢ -
— (s va)b [@] bZ)(gﬁgz) i Booly | p
Then _
p.er g < P.g.
P (e1v )b [@] bz)(gl%z) :: Booly € T[Bool,]

(o)

and the result holds.
U _ 9,U .
Case (Iprot). Thent” = ¢»> prot, , ¢"(cu) and
$ero<pg Fgrvg <gl

¢’ >ueTU']
crU U Ly

'_
xS protf;]l,](j)’(su) e T[U v ¢g]

(Iprot)

Therefore
aU 4, ¢ ~ -, ~
prot‘f.(’qy(j) (cu)lp — (eve)uvg)=Uvglu
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But by Lemma 6.9, ¢ » u € T[U’]. Therefore by definition of join ¢ » (uy g’) € T[U’ ¥ g’]. Then
using Lemma 5.43

o (uvyg)eTU vyg’]
3 (eve)rU'vg' sUvg
T pr(eve)uvg) = UvgeTU L]

and the result holds.

,
Ui—5,Up

Case (Iapp). Then tV = ¢ (A9 xUn tVn g1 @, suand U = Uy v g. Then
D
gotV2 e T[Up]  $ergg <.g

”

¢ (A9 xUn V) € T[Uy 25, U]

D
¢>UET[UZ/] {'2|-U2’$U1
9 ge
&1 FUn— Uy S Up— 43U
& F9evyg =gl perdge < P.ge
(lapp) P
U—5,Up

¢ e (MexUn V), @, cueT[U, Y g]
If e’ = (e,0%idom(s,)) or ¢/ = (¢.evilbl(¢)) o= ¢, 0% ilat(e,) are not defined, then tV | p 2, error,
and then the result hold immediately. Suppose that consistent transitivity does hold, then if

¢ =(Pe(pgey o). 9l)

A
Ui—, U,

” ¢ 9. U 'y /
5'1(Agch“.tU“)g1 @, sulp — prot‘&bll](f,,l)glg{) (icod (e )([(¢'u == Upy) /xYn]tV2)) |

As ¢, + Uy < Uy and by inversion lemma idom(¢;) + Uy < Uy, then ¢’ + Uj < Uyy. Therefore
¢v>c'u Uy € T[Uy], and by Lemma 6.11,
¢ o [(¢/u = Upy) /xU]t%2 € T[Uy,).

We know that ¢, F g. v g < g/. By inversion on the label of types, ilbl(s,) g1 < g. Also by
monotonicity of the join, ¢.c v ilbl(¢1) F ¢.g. v g1 < gc v g- Then, by inversion on the latent effect
of function types, ilat(¢;) + g, < g.'. Therefore combining evidences, as ¢’c = (¢.c v ilbl(¢)) o=
¢r o~ ilat(¢;), we may justify the runtime judgment ¢’c + ¢.g. v g1 < g/’.

Let us call 'Yz = [(¢'u =: Upp)/xYn]tY12, By Lemma 6.8, ¢” » t'V12 € T[Uyz]. Then

$.c kg < 9.8
¢’ >tV € T[Uy,]
icod(e1) FUiz Uy ilbl(e1) F g1 < g

@ > Proty. ¢ (icod(:)) (1)) € T[U; ¥ g)

(Iprot)

and the result holds.
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Case (lif-true). Then tV = if? e1by, then et else o5tV U = (U, v Us) v g and

¢ > by, € T[Booly, ] £1 + Booly, < Bool,
¢’ =(p.evilbl(e))(p.gc ¥ 91).-9-8ev )  PeFPge<P.ge
¢’ >tV € T[U;] ek Uy S (U2 ¥ Us)
{If) ¢’ > 1Y% € T[Us] &3+ Us S (U v Us)
¢ if? £1bg, then et else 5tV € T[(U, ; Us) v g]
Therefore B
if 9¢by, then et else o5tV | p i proti@ﬁ,ﬁ?l\i‘%‘)¢/(é‘ztUz) | p
But

p.cro.g. < ¢.8¢
>tV € T[U,]
£k U2 < Uz VU3 llbl(é]) F g1 < g

(Iprot) =
§ > proti )¢ (1) € T[(UV Us) ¥ g]
and the result holds.
Case (lif-false). Analogous to case (if-true).
Case (Iref). Then tV = refg/ cu and

perdg<dg  ¢rueTU”]

crU”" U ek ge < label(U)

o reff{, cu € T[Ref, U’]

(Iref)

If ¢/ = ¢ v (¢.c o= £/) is not defined, then tV" | y i> error, and then the result hold immediately.
Suppose that consistent transitivity does hold, then

’ ¢ ’ ’ , ~ ,
refff culp — oV | ploY - '@y ¢.g.) U]

where oV ¢ dom(y).

We know that ¢, + g, < label(U’), therefore ¢.c o= ¢/ F ¢.g. < label(U’). We also know that ¢ F
U” < U’. Therefore combining both evidences we can justify that ¢y (¢.c o< ¢/) F Um U’.
But _

(]S.E' + nggL < ¢gL
0Y" € T[Ref, U’]

Let us call g’ = poV +— ¢ (uv ¢.g.) == U’]. It is easy to see that freeLocs(oV’) = oV and
dom(p’) = dom(u) U oV', then freeLocs(oV") C dom(p’). Given that tV" + y then freeLocs(u) C
dom(y), and therefore V v € cod(y’) = cod(u) U (¢’ (uv ¢.g.) == U’), freeLocs(v’) C dom(u’). Finally
as tV" r pand p’(0Y') = ¢/(uv ¢.g.) = U’ € T[U’] then we can conclude that [Y" + y’ and
dom(u) C dom(p’), and the result holds.

(1)

U’

Case (Ideref). Then tV = 1R U/fozjrﬂ, U=U’'vygand
¢ >0l € T[Ref, U"]
¢+ Refy U” < Ref, U’
bk d.g. < P.ge

(Ideref) .
\Ref, U" . U” 'z
X €0y e T[U' v g]
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Then for ¢’ = ((¢.c v ilbl(e))(p.gc ¥ 9').¢.8:V 9)

Ref, U’ . U” 4 .U’ "
e ooy | u — protiabl(é_)g/tj)’(lref(f)v) | 1

where 11(0V") = v. As the store is well typed, therefore ¢»v € T[U”']. By Lemma 6.9, ¢'>v € T[U"].
By inversion lemma on references, ilbl(¢) + ¢’ < g and iref(¢) + U"” < U’

p.ekpg < Pge ¢’ >veTU"]
iref(e) FU” U’ ilbl(e) Fg' < g

$ > protiy ¢’ (iref (:)v) € T[U' ¥ g]

(Iprot)

and the result holds.

U/ 9.U
Case (Tassgn). Then tV = £10,' = ., e;uand

¢ FRefy U/ S Ref, Uy ¢»0.' € T[Refy Uf]

H kU, Uy d’"’u € T[U,]
kg <P.g. ek ¢.gev g < label(Uy)
(Tassgn) U o.U

o> glog,‘ =, c&ou € T[Unit, ]

If e’ = (e,0% iref (¢1))V ((¢p.cVilbl(¢,)) 0= ¢, 0¥ ilbl(iref (¢,)) is not defined, then tV" | i 2, error,
and then the result hold immediately. Suppose that consistent transitivity does hold, then
U’ 9.U; ¢ A , -~ . ,
£104" = e Eu | g — unity | plo? - &' @y ($.g.v 9)) = U]
We know that ¢ F §. gcm(Ul). Then by inversion on reference evidence types and
inversion in the label of types, ilbl(iref (¢1)) + label(Uy) < label(U]). But ilbl(¢1) F g’ < g, using
monotonicity of the join, ¢.c v ilbl(¢)) F ¢.g. v 9’ < ¢.gc v g. Therefore
((¢p.eVilbl(e1)) o= /) o ilbl(iref (¢1)) F ¢.g. v g’ < label(U;). We also know that if u € T[U,], then
(e2 0= iref(¢1)) + Uy < U/. Combining both evidences, ¢’ = (¢, o< iref (¢1)) ¥ (((§-¢ v ilbl(¢;)) o=
¢r) o ilbl(iref (¢1))), and by Proposition 5.43 we can then justify that ¢ + Uy v (¢.g. v g) <: U/
and therefore justify the ascription in the heap.
Let us call g’ = p[oYl = &’ (u ¥ (.g.v 9)) == U{]. As freeLocs(unit,) = 0 then
freeLocs(unity) C p’.
As tV + p then freeLocs(u) € dom(y), and as dom(u) = dom(u’) then it is trivial to see that
Y v’ € cod(p’), freeLocs(v”) € dom(u’), and the result holds.

PROPOSITION 6.13 (— 1S WELL DEFINED). IftU | i ,i) r andtV v y, thenr € ConFiGy U{ error }
and ifr = t'V | y’ € ConriGy then also t'V + p’ and dom(u) C dom(u”).

. . — ¢
ProoF. By induction on the structure of a derivation of tV | g +— r.

Case R—). tY | i) r. By well-definedness of — (Prop 6.12), r € CoNFIGx U { error } and if
r=t'"Y | ' € ConFiGy then also t'V + u’ and dom(u) C dom(y’).
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Case (Rprot). tV = prot‘f’;,f/g{)’(ftlm) and

$erde<Pg o Fgvg <gl
¢ >tV € T[U"]
crU” 5 U’ grg' <g

¢ > proty/ ¢’ (et7") € T[U' ¥ g1

(Iprot)

Using induction hypothesis on the premise of (Rprot()), then

) ¢
U U ’

tU" e V"
(Rprot()) Lk 2 H

g.U’ ” $ 9, U’ ”
prot‘Z'g, ¢’(:‘tlU Y lp — prot‘zg, ¢'(:'t2U )|y’

where ¢’ > tJ" € T[U”], t¥" v p’ and dom(y) € dom(u’). Therefore

perdg<Pg o Farve <y
>tV € T[U"]
cerU” 5 U’ kg’ <g

(Iprot) U U —
¢ > prot,, ¢'(cty ) € T[U" v g]

and the result holds.

Case Rf). tV = f[tY'], ¢» f[tV"] € T[U], V" | p 2, tY" | i, and consider F : T[U’] — T[U],
where F(¢>tY") = ¢» f[tY"]. By induction hypothesis, ¢ >t € T[U'], so F(¢>tY") = > f[tV] €
T[U].

By induction hypothesis we also know that t{/" + .

IffreeLocs(téJl) C u’, freeLocs(f[tY]) C p, and dom(u) S dom(y’), then it is easy to see that
freeLocs(f[tY"]) C p’, and therefore conclude that f[tY2] + p’.

Case (R ferr, Rherr, Rprot() ferr, Rprot()herr). r = error.

Case(Rh). tV = h[et], ¢»h[tY"] € T[U], and consider G : EVLABELXGLABELXGLABELXEVTERM —
T[U], G(¢, et) = ¢ > h[et] and et —>. et’. Then there exists U,, Uy such that et = ¢t and
£ F Up < Uy. Also, te = c,v : Ug, withov € T[U,] and ¢, + U, < U,.

We know that ¢, = ¢, 0~ ¢, is defined, and et = ¢.t, —. ¢,v = et’. By definition of o=* we have
e F Uy S Uy, 50 G, et’) = ¢ > hlet’] € T[U].

As freeLocs(et) = freeLocs(et’) and p” = p then it is easy to conclude that h[et’] + p.

Case (Rprot()h). Similar case to (Rh) case, using P : EVTERM — T[U], P(et) = ¢ » prot”’ U¢’(et).

‘,~g/
O
Now we can establish type safety: programs do not get stuck, though they may terminate with
cast errors. Also the store of a program is well typed.
PROPOSITION 6.14 (TYPE SAFETY). If¢p >tV € T[U] then either tV is a value v; tV | 2y error;

oriftY v p then tV | u +i> t'V | 1’ for some term ¢ > t'V € T[U] and some ' such that t'Y v p’
and dom(y) € dom(p’).

ProoF. By induction on the structure of ¢ » tU.

Case (Iu,1l, Ib, Ix, IA). tY is a value.
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Case (Iprot). tU = protf’;/dS’(é'tU,), and

perpg < crgvy <g
¢ >tV € T[U']
crU <5U kg <yg

(Iprot) - —
¢ > prot’/ ¢ (:t"") e T[U ¥ g]

By induction hypothesis on tV", one of the following holds:

(1) tV" is a simple value , then by (R—), tV | u rﬂ v | y, and by Prop 6.13, ¢ » v € T[U] and
the result holds.
(2) tY" is an ascribed value v, then, ¢tV" —, et’ for some et’ € EvTERM U { error }. Hence

tV | p ri r for some r € CoNFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).
3) tY" | i |i> ry for some r; € T[U;] U { error }. Hence tV | u bi r for some r € CONFIGy U
{ error } by Prop 6.13 and either (Rprot()), or (Rprot()ferr).

Case (I::). tV = ¢tV :: U, and

¢ >t e T[U]
s kU < Uy (15.5‘ F d)gn < QZSgL
o> et Uy € T[Us]

(L)

By induction hypothesis on ¢V, one of the following holds:

(1) tY is a value, in which case tV is also a value.

@) tY | p |i> r; for some r; € T[U;] U { error }. Hence tV | 4 — r for some r € CoNFIiGy U
{ error } by Prop 6.13 and either (Rf), or (Rferr).

Case (IUif). tY = if? £,tY" then e,t% else £t and

gtV € T[U}] & FU SBooly ek g, < ¢.o.
¢ = (($.c v ilbl(e1))(¢.ge v label(Ur)). gc ¥ 9)
¢ > t% € T[Uy] ek Uy S (Up ¥ Us)
¢’ > tY% e T[Us] ek Us < (Up v Us)

¢ if? o tU then e,tY2 else o5t € T[(U, J Us) v g]

(1)

By induction hypothesis on ¢V, one of the following holds:
(1) tY is a value u, then by (R—), tY | ri> r and r € CoNFIGy U { error } by Prop 6.13.
(2) tY" is an ascribed value v, then, ¢;t"" —s, et’ for some e’ € EVTERM U { error }. Hence
tY | p ,i) r for some r € CoNFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

(3) tY | ri> ry for some r; € T[U;] U { error }. Hence tV | i —> r for some r € CoNFIGy U
{ error } by Prop 6.13 and either (Rf), or (Rferr).
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’

L](.
Ui — 4 U
1»/11 gU12 QtUz

Case (Tapp). tV = ¢tV @

’

ot e T[U] & vUp < Ung—c)gUlz

gb > tUZ € T[Uz] &k Ug < U11
Gy IO S Pk <
U, Ui~ Usy U, -
Pt @, et?2 € T[Up, v g]

By induction hypothesis on ¢V, one of the following holds:

(1) t% is a value (AxUi1.tUi2), (by canonical forms Lemma 6.10), posing Uy = U{;— 5 U},.
Then by induction hypothesis on t'2, one of the following holds:
(a) t% is a value u, then by (R—), tV | ri> r and r € ConFiGy U { error } by Prop 6.13.
(b) t% is an ascribed value v, then, ¢,tY> —s_ et’ for some et’ € EvTERM U { error }. Hence

tV | |i> r for some r € CoNFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

() tY% | ri r, for some r, € CoNFIGy, U { error }. Hence tV | i ri r for some r €
CoNFIGy U { error } by Prop 6.13 and either (Rf), or (Rferr). Also by Prop 6.13, if r =
'V | u’ € T[U] then dom(p) € dom(y’).
(2) tY1 is an ascribed value v, then, ¢,tY" —, et’ for some et’ € EVTERM U { error }. Hence
tV | p 2 r for some r € CONFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

(3) tY | g+ ry forsomer; € CoNFIGy, U{ error }. Hence tV | u 0i> r for some r € CoNFIGy U
{ error } by Prop 6.13 and either (Rf), or (R ferr). Also by Prop 6.13,if r = t'V | p’ € T[U]
then dom(p) € dom(p’).

Case (I®). Similar case to (lapp)

”

Case (Iref). tV = reff{' etV and

perdg <dg. ¢tV eTU”]

crU” s U’ ek ge < label(U”)
¢ > ref’ «tV" € T[Ref, U’]

(Iref)

By induction hypothesis on tV”, one of the following holds:

(1) tV" is a value v, then by (R—), tV" | u |i> r and r € CoNFIGys by Prop 6.13. Also by
Prop 6.13,if r = t'V | y’ € T[U] then dom(i) € dom(u’).
(2) tV” is an ascribed value v, then, ¢tV — et’ for some et’ € EVTERM U { error }. Hence

tY | u ,i) r for some r € CONFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

(3) V" | I +i> r, for some r; € ConFiGy~ U { error }. Hence tY’ | I +i> r for some r €
CoNFIGy U { error } by Prop 6.13 and either (Rf), or (Rferr). Also by Prop 6.13, if r =
'Y | u’ € T[U] then dom(u) C dom(y’).

Case (Ideref). tU = Refy U7 4U”

| d.eFPg. < ¢.8¢
¢>tV" € T[U”] ¢+ U” S Ref, U’

¢ > 1R VetV e T[U' Y g]

(Ideref)
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By induction hypothesis on tV”, one of the following holds:

(1) tV" is a value IV” (by canonical forms Lemma 6.10), where U”’ = Ref, U, then by (R—),

¢
tY | u + r and r € ConFIGy by Prop 6.13.
(2) tU” is an ascribed value v, then, :tU”" —. et’ for some et’ € EvTERM U { error }. Hence

tY | p |i> r for some r € CoNFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

(3) V" | I ri> r; for some r; € CoNFIGy~ U {error}. Hence tV | u +i> r for some r €
ConFiGy U {error} by Prop 6.13 and either (Rf), or (Rferr). Also by Prop 6.13, if r =
'V | u’ € T[U] then dom(u) C dom(y’).

” l.[]
Case (IUassign). tV = ¢l ‘7:’=1,, &1Y and
¢1 + Refy Ul < Refy Uy ¢»tY € T[Ref, Uf]
s kU U ¢>t% € T[Us]
b.er g < P.g. er F@.gcv g < label(Uy)
(Iassgn) O
¢> et ‘7:’21” et% € T[Unit, ]

By induction hypothesis on tU, one of the following holds:

(1) tY%" isavalue V" (by canonical forms Lemma 6.10), where U;” = Ref, U/”. Then by induction
hypothesis on t'2, one of the following holds:

(a) t% is a value u, then by (R—>), tV | u li> r and r € ConFIGy U { error } by Prop 6.13.
Also by Prop 6.13, if r = 'V | yu’ € T[U] then dom(y) € dom(u’).

(b) t% is an ascribed value v, then, ¢,tY> —s_ et’ for some et’ € EvTERM U { error }. Hence
tV | |i> r for some r € CONFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

() tY% | ri> r, for some r, € CoNFIGy, U { error }. Hence tV | i ri r for some r €
CoNFIGy U { error } by Prop 6.13 and either (Rf), or (Rferr). Also by Prop 6.13, if r =

'V | u’ € T[U] then dom(p) € dom(y’).
(2) tU" is an ascribed value v, then, £1tY" —. et’ for some et’ € EVTERM U { error }. Hence

tV | p |i> r for some r € CoNFIGy U { error } by Prop 6.13 and either (Rg), or (Rgerr).

m

(3) tU" | U ,i) r, for some r; € ConriGyy U { error }. Hence tV | u |i> r for some r
ConriGy U {error} by Prop 6.13 and either (Rf), or (Rferr). Also by Prop 6.13, if r =
t'V | p’ € T[U] then dom(u) C dom(y’).

]

PROPOSITION 6.15 (STATIC TERMS DO NOT FAIL). Let us define STATICTERM the set of evidence
augmented terms with full static annotations. Then consider t; € STATICTERM, ¢ = (¢(, (), and p,
such that ¢ = J[¢. < L], ¢ » ts € T[S], and that Vv, € cod(y), vs € STATICTERM. Then either t is
a value, or

¢ ’ ’
ts | pg =t | pg

Proor. We know that if you follow AGT to derive the dynamic semantics of a gradual language,
then by construction the resulting language satisfy the dynamic conservative extension property.
As we follow AGT to derive the dynamic semantics, we get this property by construction, save
for the assignment elimination reduction rule. In this rule we add an extra check of the form
¢.c | <] ilbl(¢). So if we prove that the extra check is always satisfied, then the result holds.
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Let us consider a t] fully static like so:

e FRefy S| < Refr S, ¢ oyt € T[Refy S]]

kS <S8 ¢>u€T[Sz]
p.e kb <L, er F L v € < label(Sy)

(Tassgn) S 5
>0, :’:1” eou € T[Unit, ]
By inspection of the reduction rules we have to prove that ¢.c | <] ilbl(¢). ¢p.c | <] ilbl(¢). We know
by definition of interior between two static labels that ¢ = J[[€. < €] = ([(.. (). [(c. (c]). Also, f
,us(osi) = cu’ : 5], as everything is static, ilbl(¢) have to have the form ([(,,. £,,], [label(S7), label(S7)]),
for some ¢,,. Then we have to prove that £, < label(S]), but notice that as everything is static,
er bl v € < label(S;) is equivalent to ¢/ + €. v{ < label(Sy), therefore we know that £, < label(S;)
and the result holds.
O

6.5 Dynamic Gradual Guarantee

In this section we present the proof the Dynamic Gradual Guarantee for GSLges without the specific
check in rule (r7).

Definition 6.16 (Intrinsic term precision). Let
Q € P(V[*] x V[*]) U P(Loc, x Loc,) be defined as Q ::= { xUin C xUiz, oUin C oViz } We define
an ordering relation (- + - C -) € (P(V[x] x V[*]) U P(Loc, X Loc,)) x T[+] x T[+] shown in
Figure 29.

Definition 6.17 (Well Formedness of Q). We say that Q is well formed iff V { Y C [Y2 } € Q.U;; C
Uiz

Before proving the gradual guarantee, we first establish some auxiliary properties of precision.
For the following propositions, we assume Well Formedness of Q (Definition 6.17).

ProPOSITION 6.18. If Q + tU' C tY for some Q € P(V[x] x V[]) U P(Loc, X Loc,), then
U C Us.

PROOF. Straightforward induction on Q r tY C %2, since the corresponding precision on types
is systematically a premise (either directly or transitively). O

PROPOSITION 6.19. Let g1, g, € EVFRAME such that ¢ > g, [mtlUl] e T[U/], ¢- l>gz[fglt1Uz] e T[U;],
with U] T Uy . Then if gy[c11t7'] C gole01tD?], 10 € 200 and £ T 22, then gy [c1,t]"] T ga[e00t2?]

Proor. We proceed by case analysis on g;.

. u’ o, , %
Case (0 @Y et). Then fori € {1,2} g; must have the form 0 @, ¢/tY for some U/, ¢/ and tYi. As
g1le11t7] € go[e01t7%] then by Capp ¢4 C 25, ¢] C ¢}, U T Uy’ and tU C tUs.
. N U U, LU U U U o
As ¢y E ey and 8, T 1,2, then by Eapp cioty ' @, ¢t™1 E ety @) ¢)t72, and the result
holds.

g, U
Case (O &9 et,ev®d O, ev @[{ o,o0:U,"Yo,o%=,

9. Ur

v =, O,if’ O then et else et). Straightforward using similar argument to the previous case.

., et,

]



72 Matias Toro, Ronald Garcia, and Eric Tanter

91 E 9 91 E g
QU{xY Ex% )XY Cxt QF by, C by, Q + unity, C unity,

UnCUsz 94 Eg2 ¢1Co

g C g QU {xUll C xUe }F tUie . Uz
QU o Co%} kol C ol Q F (A9 xUn Vi) E (A9e2' xUn U2
N E g
91 g ¢1 C ¢ g QU s
Ucl, Qrt%ct o Cep UpCUyp & Co
guUt gr o L U! 92Uz g7 UL o U .. copUat ..
Qr prot; o P1(et1) C prot o @5 (e2t%2) (e18%11 2 Upp) E (60872 = Upp)

J1C gz QrtUnciVn QY lz

&11 £ &2 £12 £ &2 er1 E €2
U CUs U, E U, 91 E g2
del 9e2
U—, U, Us—, Uy
QreptV @, " [12]tYe C etV @, 7 [22]Y2
N Ege
Q+ tUH C tUZl €11 C 21
QrtvectUs o, Coey,
QriVs CiUs o5 Cey
Q F if" [-HtUll then é‘]ztUlz else J'HtUw c
if% otV then e,,tU2 else £,5¢Y2
QrtUnctln QYo Uz UCU, 1 Cem 9o E ge
7 ’
€11 E ey cpBen  g1E g e C e QUi c
; ;
QF (et @9 ¢, tYV12) C (e,tV @92 £,,tU2) Qrreflt ot% Cref ot
QF tUn ¢ ¢Un QY ttn QF Ve gt
UUCU ¢ LCe e11 E &g £12 £ &9 6Ce g1Cge UL
\Ur . +Unn 1Us . +Usp 91, Uz g2, U
QF e L et QF et B2 etV £ gy BT, etz

YoU' € dom(p;).30%2 € dom(uy) s.t.
QroVco”  QF (1Y) C oy (1%)

QFp Epp

where 1 E ¢y &= ¢1.6 E e A 1.2 E Pa.8c A P1.8¢ E a.gc

Fig. 29. Intrinsic term precision

PROPOSITION 6.20. Let g1, gy € EVFRAME such that ¢, > gi[¢,t"'] € T[U]], ¢ > go[2t"2] € T[U;],
with U] E U; . Then ifgi[e1tV] C goleotV2] then tV' €tV and ¢ C .

Proor. We proceed by case analysis on g;.



Type-Driven Gradual Security with References: Complete Definitions and Proofs 73

. ’ u/ ’
Case (0 @Y et). Then there must exist some /;, U;, ¢/ and tYi such that g[¢,t"] = ¢tV @, [tV

and g[e,tY?] = .tV @fi ¢,tY% . Then by the hypothesis and the premises of (Capp), t" C t%2 and
¢1 E &, and the result holds immediately.

A%

Case (O &Y et,ev®? O, ev @({ o,o:U'\Yo,o . €,

g9.Ur

v =, 0,if’ O then et else et). Straightforward using similar argument to the previous case.

m]
PROPOSITION 6.21. Let fi, fy € EVFRAME such that ¢ > fi[t"'] € T[U/], ¢o » fo[t7?] € T[U],
with U] T Uj . Then if fi[t""] € fo[t7?] and t]" C £, then fi[t"] C fo[t7?]

ProoF. Suppose fi[t'] = gi[:t"]. We know that ¢; > gy [c1t7'] € T[U{], ¢y > ga[2672] € T[UZ]
and U] C Uj. Therefore if ¢; [z"ltlUl] Eagi [z‘ltlUZ], by Prop 6.20, ¢; E ¢,. Finally by Prop 6.19 we
conclude that g;[¢; tzUl] C g1l tzUZ]. O

PROPOSITION 6.22. Let fi, fo € EVFRAME such that ¢, > fi[tY'] € T[U/], ¢, » fo[t%2] € T[U;],
with U] € Uy . Then if fi[tY"] C fo[tY2] then tYr C t%.

PrOOF. Suppose fi[tV] = gi[t7"]. We know that ¢; > gy [c£'] € T[U/], ¢y > ga[e2t2] € T[UZ]
and U/ C Uj. Therefore if g [fltlUl] Cgle tlUZ], then using Prop 6.20 we conclude that t91 £ ¢,
]

PROPOSITION 6.23 (SUBSTITUTION PRESERVES PRECISION). IfQ U {x¥ C xU} + tUr £ t% and
QrtYB CtYs then Q F [tV /xV ]t & [#Y /xV ]2,

Proor. By induction on the derivation of t C tU, and case analysis of the last rule used in the
derivation. All cases follow either trivially (no premises) or by the induction hypotheses. O

PROPOSITION 6.24 (MONOTONE PRECISION FOR 0~°). Ife; C &) and e3 T ¢4 then ey 0= 3 £ 6,0 ¢y,

ProoF. By definition of consistent transitivity for <: and the definition of precision. O

PROPOSITION 6.25 (MONOTONE PRECISION FOR 0%). Ife) C &) and ¢; C ¢4 then ey o= &5 T £, 0= &4,

Proor. By definition of consistent transitivity for < and the definition of precision. O

PROPOSITION 6.26 (MONOTONE PRECISION FOR JOIN). Ife; C &) and &5 C ¢, then ey v &3 C £, v £4.

Proor. By definition of join and the definition of precision. O

ProrosiTION 6.27. IfRef Uy C Ref U, then Uy E Us.

ProoF. By definition of precision we know that
{Ref T | Tey(U;)} CS{Ref T | T € y(U)}. This relation is true only if y(U;) C y(U,) which is
equivalent to U; C Us. O

ProprosITION 6.28. IfUj C Uyp and Uy E U,y then Uy V Uyy T Uy ¥ Uyy.

Proor. By induction on the type derivation of the types and consistent join. O
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LEMMA 6.29. If!'] + Refg11 U11 < Refgu U12 and &k Refng U21 < Refgzz Ugg, and & E &, then
iref (1) E iref(e).

Proor. By definition of precision and iref. O

PROPOSITION 6.30 (DYNAMIC GUARANTEE FOR —). Suppose Q + t' T t2, ¢ T ¢,, and
¢ ¢ ‘
QF pu C . Ifl‘1 | 11 = tg‘ | ui then tlUZ | po AN tzUz | u; where Q' + l‘ZU1 C tgz and
Q'+ pf C p, for some Q" 2 Q.

Proor. By induction on the structure of t1 cC t1 . For simplicity we omit the Q F notation on
precision relations when it is not relevant for the argument.

Case (— ®). We know that t* = (¢, 1(b1)gy; ® £15(b2)g,,) then by (Eg )t = (e 21(b1)gy ©
£25(b2)g,,) for some e51, €95, 921, 922 such that 11 T e, €15 C €25, g11 C go1 and gy2 E goa.

$ -
Ift | iy —> by | gy where by = (¢1, ¥ 1,)(by [@] b2) % BOOly, then

¢ 4 7 -~ ~
tlU2 | p2 AN bj | up where b} = (51 v ¢22) (b1 [9] bz)(qz&gzz) i Booly, . By Lemma 6.26, (¢, v £12) C
(21 v €22). Also (g11 v 921) E (921 V 922)-
(911 v 921) C (912 v 922)
Qr (b [[EB]] b2)(911§gz1) C (El [[69]] bZ)(yzL\?gzz)
Bool,, C Bool, (11 V €12) T (621 v €22)
(‘(.11 Z!']Z)(bl [[@ﬂ bg (911\/‘7 ) Boolql | -
(€21 ¥ €22) (b1 [@] b2) (921\/922) :: Booly,

Therefore t2U1 C tZUZ. As Q' = Q, pi =y and pp = pj then Q'+ pf E pj.

a1, U. 92Uz 1,
Case (—sprot). We know that ' = = prot; e 1¢1(tlu1 ), then by (Epmt()) = proth ng dy(eoug) ,
and therefore
91 E g2
91 E g1 $1C ¢ e1E &

UUCU QruCTuy e Cep

Q+ prot!” llgbl(flul) C prot”” Ungz(buz)

for some ¢, us, U and ¢,», where u; € rJI’[ /] and u, € T[U, ] If

o _ I
tl1 |1 — (e1ver)wivg]) = Uivgr | pr. Therefore, t1 | po —> (e2vera)(uzvgy) = Uav g | pa.
By Lemma 6.26, (¢;v¢/1) T (£2v¢72), and as join is monotone Uy vg; C Usvgs and (u1vg;) E (uavgs)-
Therefore by C.., (¢ v er1) (w1 v g1) = Ui v g1 C (e2Ver)(ua v g3) n Up v g2. As Q' = Q, pf = py and
Ho =y then Q' + pf € .

Case (—app). We know that

U1—> Uz

1 = ¢ (AxUn, tUlZ) @, 124 then by (Egpp) t must have the form

7/

= ,](AxUn tUzz) @ 9
Let us pose ¢, = 1, 0 ldom(éll) and ¢/, = (p1.¢ v ilbl(e11)) o= ¢4y o~ ilat(eyy),
¢1 = (/1 (9] v $1.80). 91 ¥ ¢1.8c). Then

$ (
L — protiy @] (icod(e1)8) |y with 8] = [(1 = Upg) fxU eV,

Also, let us pose &, = e, o< idom(ey) and ¢/, = (Pg.c v ilbl(e2;)) o= 75 o= ilat(ey), ¢y =

Us
eoouy for some £, xU2 tY2 Uy Uy, £09, 902> 92 and uy.
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(e/,(9) ¥ ¢2.8¢). 92V $2.8c). Then

t U | U L prot‘ZfblZ4 o, @3 (icod(e01)t5) | o with ty = [(eouy == Uyy) /xV21 ]t V22,

As Q + tlU‘ C t1 , then uy T uy, €12 T &5, and idom(ey;) T idom(e,;) as well, then by Prop 6.24
&1 E ¢. Then c1uy = Uy C eoup = Uy by (C.).

We also know by (Eapp) and (C,) that Q U {xUs £ xU21} + tYz C U2 By Substitution preserves
precision (Prop 6.23) t; E tj, therefore icod(¢1,)t] :: Uy E icod(es)t; 2 Uy by (E..). Also g1 C g,
ilbl(¢1,) C ilbly;, 91 C g5 and by Lemma 6.24 and 6.26, ¢/, C ¢/,. Also, as ¢1.g. C ¢;.g. by mono-
tonicity of the join ¢ v ¢1.8: T g2 ¥ ¢2.8c, and as ¢1.g. T ¢o.g. also by monotonicity of the
join 9{ v ¢1.8c T g5 v $2.gc. Then by (Epror()) L‘ZU1 c tZUZ. As Q' = Q, u; = py and pp = py then
Q" F py C .

Case (—if-true). tlU1 = if" ciitruey then else e1otYU120,5tU then by (Eir) tlU2 has the form

12
921, €22, tUZz, £23, and tU3i. Then

= if? eitruey then else ¢,,tY2¢,,tU for some

U 4 91, (UisNUs) 4y 7
'y — protiybl(((:f)q/ W@ (e,tY12) | py, and

U, P2 92, (Una\/Uss)
" | p2 — pro t,lzm( Zf)g by (e0t™) | p.

Where ¢! = ((¢;.c ¥ ilbl(ei2) (9] ¥ ¢i-gc). Pi-gc v 9:]). Using the fact that t UZ we know that
€12 E €22, tVe £ V2 g7 € g as ¢1.5. C ¢. gL and g; C g3, and as join is monotone é1. g Vgl c
$2.9: v g2- Also as ¢;.g. C ¢2.9. and g; C g4, and as join is monotone, ¢;.g. v q1 C¢o.ocv q2 By
Prop 6.18, we know that Uj, C U,y and Uys C Uss. Therefore by Prop 6.28 (Uyp v Ups) C (Uzz v Ups).
Also as ¢1.c T ¢y.c and ilbl(¢15) T ilbl(¢2,) then by Lemma 6.26 (¢q.¢ v ilbl(e15)) T (¢p2.c v ilbl(e22)).

Then using (Sprot())s t2 c tzUz. As Q' =Q, u1 = py and pp = pj then Q" + pj T pi.
Case (—if-false). Same as case —if-true, using the fact that ¢;5 C ¢,5 and tUns C Uz,

U U
Case (—ref). We know that tlU1 = ref.}, ¢uy, then by (E,ef) tle = ref,}, ¢,uy , and therefore

Ul” C UZN &1 E ep Jc1 C 9ec2
o Cey QFu; Cuy

Ql—ref

for some ¢, uy, Uz” and ¢/,, where uy € T[U]] and u, € T[U;]. If

”

U2
o e‘lul C ref.} coup

é1 » ~
t1U1 |y — 0L |y [1Y e v]], for some [V ¢ p; and where v] = ¢/ (u; v gr1) = U/, ¢ =
~ é v’ " ”
£1 Y (¢1.c o= £41). Therefore, t12 | po BAN 0. | u2[1%" + 03], for some IY2" ¢ p, and where
vy = eh(ua v gra) 2 Uy, &) = 3 v (@2.€ 0= £/5). By Lemma 6.26 and 6.24, ¢ C ¢). Also as ¢;.¢ C ¢y.¢
and U; C U,, then by definition of rf, ¢/ C ¢/'. Then using Q" = Q U { I C %'} and that 1L C 1,
uy oy . .. ~ ~

by (E;) we can see that Q" + [[' CI;*. As g,1 C g2, by monotonicity of the join, u1 v 9,1 E uz2 v gr2.
Therefore using E.., Q" + v] C v;. Also because Q C Q’, then by the fact that Q + p; T pip, it is easy
to see that Q U { 1Y C 1Y} + iy [IU7 - 0] C i [IY% 5 03], ie. Q' F g1} T i,

U , U’/ U , U//
Case (—deref). We know that ¢;* = 1R¢fo Ui (“1lq/1 b2 = 1Ref, UZ("qu/Z and so
J1 J2

’ u’” ’ U’ . ” ”
Q + 1Refo Ul é‘llgil C IRef, U g*zl ,1 .As Q+ py C pip, using (E,) then Q + pi (1Y) E pp (1Y), Then

1Refy, U,

1/5'111{1” | u ﬂ prot 1(;’)1 iref (¢,)p1 (0%")) where ¢/ = ilbl(¢;). Therefore

|Ref

%2 e, l v | p i) pr ot 2¢2 iref (¢,) 12 (0% )) where ¢/ = ilbl(z>).
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Where ¢} = ((¢pi.c v e])($i-gc ¥ 91), $i-8c ¥ 9:). By monotonicity of the join ¢1.g. v g1 T ¢2.2¢ V g2,
G129 T ¢2.g2.vgs and (P1.eve]) T (P2.6veL). As e E &, then by Lemma 6.29, iref (¢1) T iref (¢3).
Then Using (Cprot()) We can conclude that Q + ' Tt As Q' = Q, g = g} and iy = pj, then also
Q" F py C .

. U U, 9uUf U, U, 92U;
Case (—assign). We know that t;' = ("ulgl“ =, EoUg, £ = é'ulgzﬂ i=",,, tpUy and so
g, U/ 92.U,
QFr f‘]]l},{“ =g f12Un C Fg]l;?l =gy, E22U2. Then

[ . yy o~ ~ , - ~
tlU1 | ;1 — unit, | yl[lU“ - v1], where v; = ¢/ (U1 v (gr1vg1)) = Urr,and ¢] = (1,05 iref (¢11)) v
((¢1.2 ¥ ilbl(¢11)) o= £/, o= ilbl(iref (¢;1)). Similarly, then

t72 | 1y N unit, | g (1Y > vy], where vy, = (U2 v (972 v 92)) == Uay, and ¢} = (e55 0<% iref (1)) v
(2. Vilbl(c51)) 0= e, 0¥ ilbl(iref (¢,;)). We need to prove that pf = py [IV + 0] Ty = po[IV2
v5]. Because Q F yi1 C pi then Q + [Vt £ [V by (T,). By well formedness of Q we also know that
Ui E Upp. Therefore, by Lemmas 6.24, 6.25 and 6.26 ¢| E ¢). Then using C.., v; E v;, following that
Q' =QF pj Cpj.

]

¢
PROPOSITION 6.31 (DYNAMIC GUARANTEE). Suppose tlU1 c tle, ¢1 E ¢, and p1y C po. IftlU1 | 1 —

¢
t90 | ) then t% | py —> %% | p where t' C 12 and pj C pi.

Proor. We prove the following property instead: Suppose Q + tlU 'C tlU L1 E g, and Q F py C
¢ R
pio. I | gy — 9| g then £ |y — t5% | uy where Q' ¢ 5" C t.” and Q' ¢ y C pj}, for
some Q' 2 Q.
By induction on the structure of a derivation of tlU ' C tlU * . For simplicity we omit the Q F

notation on precision relations when it is not relevant for the argument.

Case R—). Q + l‘lU1 C tle, QFpy T pp and

U LG
tll |ll1 el tzl 2

| 1. By dynamic guarantee of — (Prop 6.30), tlU
Q )" T, Q' vy Ty for some Q' 2 Q. And the result holds immediately.

¢
| o AN t1U2 | p5 where

Case Rf). t9 = fi[t], 1% = £[t]. We know that Q + fi[t"'] T f£[t *]. By using Prop 6.18,
U] C Uj. By Prop 6.22, we also know that Q + tlU{ C tlUZ,. By induction hypothesis, tlUl, | g1 »ﬂ
tZUl, | 11, tlUé | g2 N tzU"’, | p5, Q' tzUl, c tZU"’, and Q' + pj C pj for some Q' 2 Q.
Then by Prop 6.21 then Q’ + fl[tzUl/] c fz[tZUZ’] and the result holds.
Case (Rprot). Then ¢/t = prot‘i’,/‘";’f d){(a‘ltf]‘/) and 72 = prot?f'zgqﬁé(z'ztl{]{)

As ' Tt then by (Cprot(), N C 1% 80 C pe © er0gi T gang) € gl and & T &, By

’ U / /

Rprot), tU’ |y +— tU‘ | ” and by induction hypothesis, tUl C tU2 and Q' + y! C u) for some
p 1 LH 2 | H Yy Yp 2 2 H = M

Q' D Q.
But then by (Cprot()),

g1, U U/ g2, U X U,
Q'+ prot‘]/l‘gil P1(eit, ') C protf/z,g;qﬁé(zztz ?) and the result holds.

Case (Rg). tlU1 = gilet1], l‘lU2 = goletz], where Q + gi[et;] T go[etz]. Also et; —, et] and
ety —. ety.



Type-Driven Gradual Security with References: Complete Definitions and Proofs 77

Then there exists Uy, ¢11, 1> and v; such that et; = ¢;(¢1,0; 2 Up). Also there exists Uy, €51, €22
and v, such that et; = ¢, (200, = Up). By Prop 6.20, ¢1; € ¢,1, and by (C..) ¢12 E €2, v1 E v, and
Ui C U,. Then as et; —, (612 0% ¢11)v; and ety —, (¢25 0= ¢21)v, then, by Prop 6.24 we know
that £, 0" 11 T &5, 0~ 5. Then using this information, and the fact that v; C vy, by Prop 6.19, it
follows that Q + gy [et]] C gi[et;]. As Q' = Q, p] = py and pp = g then Q" + pj T pi.

Case (Rprotg). Analogous to (Rprot) case but using — instead.
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6.6 Noninterference

In this section we present the proof of noninterference for GSLg.s. We use a logical relation that
is more general than the one presented in the paper. The main difference (beside using intrinsic
terms), is that the logical relation is no longer indexed by a static security effect. As ¢ embeds the
static security effect information, we generalize the logical relation to also relate two different static
security effects as well. Section 6.6.1 present some auxiliary definitions. Section 6.6.2 presents the
proof of Noninterference (Prop 6.64), which implies Security Type Soundness (Prop 2.24) presented
in the paper.

6.6.1 Definitions. We introduce a function uval, which strips away ascriptions from a simple
value:

uval : GTYPE — SIMPLEVALUE
uval(u) = u
uval(cu = U) = u.

In order to compare the observable results of program, we introduce the rval(v) operator, which
strips away any checking-related information like labels or evidence-carrying ascriptions:

rval : VALUE — RAWVALUE
rval(by) = b
rval(cby = U) = b
rval(unity) = unit
rval(cunit, :: U) = unit
rval(og) =0
rval(;'ogl =U)=o0
rval(A9 xY.t%2) ) = (A7 <Y 1t2)

rval(s(29 V.1, = U) = (A9 xY 1%

Definition 6.32 (Gradual security logical relations). For an arbitrary element ¢, of the security
lattice, the £,-level gradual security relations are step-indexed and type-indexed binary relations on
tuples of security effect, closed terms and stores defined inductively as presented in Figure 30. The
notation (¢, vy, y1) z’lfo (P2, V2, t12) : U indicates that the tuple of security effect ¢, value v; and
store y; is related to the tuple of security effect ¢,, value v, and store i at type U for k steps when
observed at the security level £,. Similarly, the notation (¢~ tortreg s B, )k (., t., p.) C(U) indicates
that the tuple of security effect ¢;, term #; and store y;, and the tuple of security effect ¢, term ¢,
and store i, are related computations for k steps, that produce related values and related stores
at type U when observed at the security level £,. Notation 4 zlgo 1 relates stores py and p, for k
steps when observed at security level £,. Finally, notation ¢; =, ¢, relates security effect ¢, and
¢, for any number of steps at security level £,.

We say that a value is observable at level ¢, if, given a security effect ¢, the value is typeable,
the security effect is observable, and the label of the value is sublabel of £,. Also, as value v can
be a casted value, we need to analyze if its underlying evidence justifies that the security level
of the bare value is also subsumed by the observer security level. We do this by demanding that
the underlying evidence and label is also observable. We say that a security effect is observable
if its underlying evidence and static label is also observable. We say that an evidence and label
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(1,01, 1) %IED (P2, v2,p2) : U &= 1 =¢, $2 A1 zlgo p2 A ¢i»v; € T[UJA
(obs(zo((ﬁi > v;) V —obsy_ (¢ > vi))/\
(ongo (pivvi) = obsRel,lc]’[0 (¢1,v1, p1, P2, V2, pg))

obsRelg(;O(¢1,01,p1,¢2,vg,y2) — (rval(v1) = rval(vz)) if U € {Booly, Unity, Ref, U’\
L P
obsReij{:)”1 (1,01, 11, P2, V2, fi2) &= Vj < k.VU' = U{’igéUZ",U{,Vébl", st @i <¢, i,

g{ P
7’ ’ 4 ’ o .
el kU= U2 U’  and &) F U] S U, ¢l" F 180 v 95 < 95/, we have:

Vol uf, (101 py) =y (B2, 03, Hp) < Uy, dom(pi) € dom(uj),
(@1, (cjo1 @7 Lo p)) =) (s (02 @) €40y i) : C(US' Y g3)

(fr.t1 ) ~§ (fo.ta pr2) - C(U) &=
$1~¢, $2 A1 zllfo p2 AL, st i < ¢ and ¢ » t; € T[U] we have ¥j < k

q

¢i - k—ij
(ti L =76 Vg = g~ A

(irred(t]) = (p1, ], 1) .7 P, th,p3) : U))

pap e == Mg, $2.j < kYol € dom(ur) N dom(y)
(1> p1(0Y). 1) %]50 (2> p2(0Y). 2y : U
#1 ~¢, 2 &  obsg (¢i.chi.gc) V —obsy (¢i.chi.gc)
$1<¢, 2 = obsg,(¢2.602.8c) = obse, (P1.c41.8c)
pr—>pz = dom(u1) C dom(uz) - -
obsg (prv) & ¢rveT[U]Aobsg (¢) Alabel(U) <lo A ((v =cuzU) = obsl;o(ilbl(z‘)label(U)))
obse,(§) e obsy,(¢.c4.0)
obsg (¢g) = &=  ¢o~¢ isdefined, where ¢’ = 9<(g, o)

Fig. 30. Gradual security logical relations

are observable, if any value with that underlying evidence and static label, can be used used as
argument of a function that expects a value with security level £,. If the consistent transitivity check
of the reduction of the application does not hold, then it is not plausible that the security level of
the value is subsumed by ¢,, and therefore is not observable. For instance, consider ¢, = L, evidence
¢ ={([H,T].[L, T]) and static label g = ?. We can construct any value such as v = ctrue; :: Bool,,.
The level of the value and the bare value are sublabel of £,. But the evidence describes that at some
point during reduction, the security level of the bare value was required to be at least as high as H.
Therefore, v is not observable at level L (considering L < H), because as I<(?,¢,) = ([ L, L], [L.L]),
the consistent transitivity operation ([H, T],[L, T]) o<* ([ L, L], [L, L]) does not hold.

Two stores are related at k steps if each value in the heap of the locations they have in common,
are related at j < k steps for any related security effects. We say that store p; is the evolution of
store pp, annotated p; — 5 if the domain of g is a subset of p,.
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Two tuples of security effects, values and stores are related for k steps at type Bool,, if the security
effects are related, the stores are related for k steps, the values can be typed as Bool, using the
security effects as context (any security effect will do, given that the typing of values do not depend
on the security effect). Additionally, both security effect and values must both be either observable
or not observable. If the security effect and values are observable then the raw values are the same.
Two tuples are observables at type Unit, and Ref, U analogous to booleans.

Pairs are related at function types similarly to booleans. The difference is that functions can not
be compared as booleans. Two functions are related if, given two related values and stores for j < k
steps at the argument type, the application of those function to the related values are also related
for j steps at at the return type.

Two tuples of terms and stores are related computations for k steps at type U, first, if the security
effects are related, and the stores are related for k steps. Second the terms must be typed as U using
a observationally higher security effect. Third, if for any j < k both terms can be reduced for at
least j steps, then the resulting stores are related for the remaining k — j steps Finally, if after at
least j steps the resulting terms are irreducible, then the resulting terms are also related values for
the remaining k — j steps at type U. Notice that the logical relation also relates programs that do
not terminate as long as after k steps the new stores are also related.

To define the fundamental property of the step-indexed logical relations we first define how to
relate substitutions:

Definition 6.33. Let p be a substitution and I a type substitution. We say that substitution p
satisfy environment I', written p |= T, if and only if dom(p) = T.

Definition 6.34 (Related substitutions). Tuples (¢1, p1, u1) and {2, pa, j12) are related on k steps
under I', notation I' (¢4, p1, p11) z’go (P2, p2- pr2), if pi =T, pq z’;ﬂ 12 and

Vx € T (g, pr (), po) 5, (P2 pa(x”) pi2) : U
6.6.2  Proof of noninterference.

LEMMA 6.35 (NONINTERFERENCE FOR BOOLEANS). Suppose k > 0, and
e an open term ¢ >tV € T[Boolg,] where FV(t) = { xU } with label(Uy) %t’o
e two compatible valid stores tV v p;, jiy z’gﬂ Lo
Then for anyj < k, v1,v; € T[U1], if both

¢ i ’
o tY[v/xU] | V= To] |y

¢ i ’
o tUTup/xU] | pp +— 705 | g}

we have that rval(v]) = rval(v;), and pj z’go 5.
Proor. The result follows as a special case of Proposition 6.64 below. O

In this theorem, we treat tU as a program that takes xV as its input. Furthermore, the security

level g’ = l;l?)?l(Ul) of the input is not subsumed by the security level ¢, of the observer. As
such, noninterference dictates that changing non-observable input must not change the observable
value of the output (i.e., change true to false or vice-versa). However, this theorem is technically
termination-insensitive in that it is vacuously true if a change of inputs changes a program that
terminates with a value into one that either terminates with an error, or does not terminate at all.
If a program does not terminate after any number of steps, then at least the stores are related at
observation level £,,.
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Note that we compare equality of raw values at first-order type. Restricting attention to first-
order types (i.e., Bool) is common when investigating observational equivalence of typed languages.
We strip away security information because a person or client who uses the program ultimately
observes only the raw value that the program produces.

Also, gradual security dynamically traps some information leaks, so a change in equivalent
inputs may cause a program that previously yielded a value or diverged to now produce an error.
This change in behavior falls under the notion of termination-insensitive, since yielding an error is
simply a third form of termination behavior (in addition to producing a value and diverging).

. . 4 . . .
Finally, we use notation t5 | u — 'S | y’ to describe that configuration t° | y reduces, in at
most k steps, to configuration 'S | p’.

LEMMA 6.36. Consider e, + g < g’ IfVe, such that ¢, + g’ <y, e 056, F g < {, is not defined.
Then ifes + g’ < 9", then Ve, such that es + 9" < £,
then (1 0= £3) o= ¢, + g < €, is not defined

Proor. Applying associativity: (¢, 0= £3) 0= &, = £, 0= (£5 0% &), but (&3 0% &) + ¢’ < Jo, and
we know that ¢, o= ¢, is not defined ¥¢, such that ¢, + g’ < £,. Therefore (¢, 0= &3) 0= ¢4 + g < &,
is not defined and the result holds. ]

LEMMA 6.37. Consider e, + g < g’ IfVe, such that e, + g’ < lo, 1056k g < €, is not defined.
Also e F gy < 92, ifes b g2v g’ < o, then (e9v e1) 0% &5 F g1 v g < €, is not defined

ProoF. Let us prove that if (¢) v £1) o= &5 F m is defined, then ¢, o< ¢, is defined.

As join is monotone 3¢/ such that ¢/ + g’ < g2 v g’.

Suppose ¢; = ([t11, C12], [€21, Ca2]), €0 = ([€31, U32], [Lan, Caz])s f]') = ([l51, Cs2], [Co1, Le2]), and &3 =
([€71, €721, [Ls1, Ls2]).
As eover = Ly G by Cso ][00 v Car Gon v L10]) is defined, then €11 v €31 < €12 v €32 and
521 Y 541 < 522 Y 542. Also as

(e0V e1) 0% &5 = ([C11 v (31, (L v C32) A ((Con v Lan) A l2) A Lss],
[[11 v 31y or v Ly V[TZV[81~[82]>
is defined then €21 v €41 v €71 < (o2 v Laz) A ly2, L1 v €31 < (La2 v La2) A bya, €11 v €31 < L5, and
Co1 v €y v €71 < Lga.
If we choose ¢ as the interior of the judgment, then we do not get new information, therefore
[[21. [22] C [[51. [52], ie. f51 < {721 and 522 < {752. USil’lg the same argument 561 < 571 and £72 < 562-
Then

g‘l') o< &3
= A%([ls1, C52], [Co1s Co2] T [€71, E72], [Cs1, Cs2])
= AN([€s1,C52], [Co1 v €71, Coa A L72), [€s1, Cs2])
= AN([ls1, 52), [€71, £72], [€s1, Cs2])

which is defined if€51 < 572,571 < 582 and 551 < fgg.But 551 < 521 < 521\/541\/571 < (522\/542)/\572 <
72, U51 < €21 < lo1 v €41 v U1 < €z and €7y < Lo1 v €41 v U1 < g,

Therefore

£ 0% &3 = ([€s1, 52 A Uy A lga), [C51 v Ur1 v a1, s2])

Using the same method, ¢; o= (&) o= #3) is defined if €51 v £51 < €az A (€52 A €72 A Ls2), €11 <
522 A (552 A 572 A fgz), and 511 < 582.

But by definition of : 521 < 522, also 521 < fzz < 552, 521 < 521 Y 541 Y 571 < (522 Y 542) A 572 < 572,
Co1 < o1 v by v b1 < Ly, and 51 < 071 < {p3, therefore Co1 v 51 < Lo A (552 Al A 582).
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Also €11 < Cag < s, €11 < €11 v €31 < (€22 v L42) A7z < {79, and €11 < €11 v €31 < gy, therefore
l11 < Cog A (Us3 A b7z A bs3), and €11 < Lo
Then as ; o= (¢ o= #3) is defined then if we choose &, = (¢) 0= £3) + g’ < €,, the result holds.
m]

LEMMA 6.38 (ASSOCIATIVITY). Consider ¢1,¢, and 3, such that e v g1 < g2, &2 F g2 < g3 and
ek 93 < ga. (1 0% £) 0% &5 = ¢ 0% (£ 0% ¢3)

ProOF. Suppose ¢1 = ([(11, (12]. [(o1, Coz]), 2 = ([L31. (32 ], [Lan, Loz ]),and e3 = ([L51, U520 ], [Lors Loa])
Then

(e10%6) 0% &y

= AS([l11, Cia], [Co1, Ca2] T [€31, U3, [La, La]) 0% e3

= A<([fuﬂ 12, [C21 v C31, Loz A l32], [Ca1, fqz]) o< &3

= ([l11, l12 A (L2 Alsp) Alaz], [C11 v (Co1 v 031) v Ca1, Can])
°<<[['51~, Cs2], [€o1, Co2])

= AS([1n, Cia A (Caa Al32) A2), [€11 v (Co1 v U31) v Lag, Caz]M
(€51, Cs2], [, Co2])

= AN([C11, Cia A (Eap A l32) Alg2),
[C11 v (L21 v €31) v L1 v Cs1, Cag A Us2],
[£61. C62])

= <[[V11s[§1]’[[(/,1’[62]>

where €é1 ={12 A (522 A 532) ALy A €59 A Lo and fél =fuv (521 \ 531) v €41 v €51 v €61. But

¢ oS (e o= £3)
= & o< A<([[31, l32], [Car, €a2] M [C51, Usz], [L61, Lez])
= & o< Aé([[’jls l32], [Ca1 v Us1, Caz A Cs3], [Ce1s [oz])
= ([t11. Or2], [€21, C22])0™

([€31, l32 A (Laz Als2) Aoz, [€31 v (Ca1 v €51) v o1, Lez])
= A%([l11, C12], [Ca1, 2]

(€31, 32 A (Caz A ls2) Alsa], [C31 v (Car v €51) v Co1, Lo2])
= A%([l11, (2],

[C21, (a2 A (L3g Alag) Alsy Algs],

[€31 v (Ca1 v €51) ¥ L1, L]
= <[[11~[§1]~[[;(:1~[()2]>

where fél =l A (522 /\532) Algy Alsy A gy and fél ={nv (521 V€31) v €41 v €51 v o1, and the result
holds. .

LEMMA 6.39. Consider ¢1,¢, and ¢ such that ey v g1 < g2, e2 F g2 < g3 and ¢35 + g3 < gs. If
£1Y (2 0= ¢3) is defined, then (¢, v ;) o= (e1 Y £3) is defined

Proor. By definition of join and consistent transitivity, using the property that the join operator
is monotone. O

LEMMA 6.40. If fle;, such that ¢, + g1 S ga, then Ae,, such that ¢, + m
Proor. By definition of join and consistent transitivity, using the property that the join operator

is monotone. m|

LemMA 6.41. Consider stores 1, piz, jiy, i3 such that p; — pf, and substitutions py and p,, such that
T+ (1, p1, i) =5, (o, P2 pt2), then if Vj < k, if pf ~, py then T v ($u, p1, i) =, (b2, pa, p15)



Type-Driven Gradual Security with References: Complete Definitions and Proofs 83

Proor. By definition of related computations and related stores. The key argument is that given
that p; — pj then p] have at least the same locations of y; and the values still are related as well
given that they still have the same type. O

LEMMA 6.42 (SUBSTITUTION PRESERVES TYPING). If¢p>tY € T[U] andp |= FV(tY) then ¢>p(tV) €
T[U].

ProoF. By induction on the derivation of ¢ » tV € T[U] O

LEMMA 6.43 (REDUCTION PRESERVES RELATIONS). Consider ¢; <¢ ¢, ¢pi>t; € T[U], p; € STORE,

[
ti v i, and py zlgo Ho. Consider j < k, posing t; | pt; +— 7t} | yj, we have
. . ’ /7 k_A ’ ’
(Puotr, i) 5, ($as tz, pi2) = C(U) if and only if ($u, 1], pi) ~p. " (b2, 15, p13) : C(U)

Proor. Direct by definition of

q

(P1,t1, 1) z’go (P2, t2, pi2) : C(U) and transitivity of »i) J. ]

LEMMA 6.44 (ASCRIPTION PRESERVES RELATION). Suppose ¢ + U’ < U.
(1) If{¢p1,0,u) 1 z’;ﬂ ($2,v, )2 : U’ then

(p1,cv1 = U, p1) zlgjl (P2, cv2 : U, o) : C(U).
@) If(prt.p) 1 ~E (fo.tp)2: C(U) then

(P1, ety =2 U, p1) z’;ﬂ (Pa, ety 2 U, pg) - C(U).

Proor. Following Zdancewic [2002], the proof proceeds by induction on the judgment ¢ + U’ <
U. The difference here is that consistent subtyping is justified by evidence, and that the terms
have to be ascribed to exploit subtyping. In particular, case 1 above establishes a computation-level
relation because each ascribed term (¢v; :: U) may not be a value: each value v; is either a bare
value u; or a casted value ¢;u; = U;, with ¢; + S; < U. In the latter case, (¢(¢;u; = U;) = U) either
steps to error (in which case the relation is vacuously established), or steps to ¢'u; :: U, which is a
value. Next if both values were originally observables, then whatever the label of U both values are
going to be related. If both values were originally not observables, then by Lemma 6.44 both values
are going to be still non observables.

O

LEMMA 6.45. If {(¢1,v1, t1) z’go (P2, V2, pi2) + U and, ¢; > uval(v;) € T[U;] where U; < U, then
YU, U s U, ¢ v U; S U (¢, cruval(vy) = U, py) z’;g (P2, cxuval(vy) = U’ puy) : U,

Proor. Consider U’ and ¢, such that ¢ + U < U’. By Lemma 6.44.1, (¢, cv; = U’, py) z’gﬂ“
(P2, cvg = U’, p) = C(U). Next we consider the case were evidence combination do not fails. In
#;
case of a failure the lemma vacuously holds. Then as ¢} > cv; :: U € T[U'], cv; = U’ | pi +—
g;uval(v;) = U’ | p; and the result follows using Lemma 6.43 and observational monotonicity of
the transitivity (Lemma 6.51).

]

LEMMA 6.46 (DOWNWARD CLOSED / MONOTONICITY). If
(1) b1, 01, 1) =, (o, V2, i) : U then
Vj < k,{$1, 01, 11) zjgu (P2, 02, p12) : U
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(2) <¢13 tlU’;u1> zI[So <¢29 tzU’Il2> : G(U) then
VJ < k? <¢1’ t1U7Ill> zj[o <¢27.t2U’ HZ) : G(U)
(3) m zlgfo uz thenVj < k, i zéo H2

Proor. By induction on type U and the definition of related stores. O

LEMMA 6.47. Consider ¢, + g < g1 and ¢, + g, < g2. Then (—obsg, (c191) A &1 |<] &) =
—obsg, (¢292).

PRrOOF. Suppose ¢; = ([(11, (2], [15. C14]) and e, = ([Lo1, (o], [ (o3, Loa]).
Also consider ¢ = I<(g1, o) = ([(]. 01,1, [(o. (o)) and &) = T<(ga, €o) = ([ (5. 0,1, [Lo. Co]).
Ife; 0N &) = AN([(11, (o), [Cis v U] Cia A L], [Co, £o]) is not defined then
(1) €13 v €]~ < Lig ALY,
(2) tim < l1a A7y, o1
(3) t1s vt <L, or
(4) 1= < lo.

By construction we know that £1; < £14. By ¢; | <] ¢, we know that €13 < €a3.

If g1 = ¢, then [(1,.(1,] = [(15.(14] = [(, ], therefore € < £23.If £— < €y, then o5 v {51 < &,
and the result holds immediately. If £ < £,, by construction of evidence we know that it must be
the case that £1; < {13, then either

(1) £ v €~ < € A€ (which is impossible),

(2) €11~ < € A€ (which is a contradiction by construction of evidence), or

(3) € v €= < {, (which contradicts £ < £,) or

4 ti— < to.
so the only possibility is that £;;— < £, but we know that 11 < {3,1i.e. {13 < { and that £ < ¢,
then by transitivity £;; < ¢, which is a contradiction so ¢ < ¢, case cannot happen.

If g =2, then [(],.(],] = [L,(,].

If (1) holds, ie. {137 < €14 A {,, by construction we know that £33 < {14, therefore it must be the
case that €13— < €,, but {13 < {53 and the result holds because (3) does not hold for «,.

If (2) holds, i.e. {11~ < €14 A o, by construction we know that €11 < {14, therefore it must be the
case that £1;— < {,. We also know by construction that £1; < {13, then 13— < {,. As {13 < {33, then
3 < {,, and therefore (3) does not hold for ¢, i.e. €23 v £5;— < €,. If (3) holds, i.e. {13 v L= < &,
then €13— < €,, but €13 < {53 and the result holds because (3) does not hold for «,.

If (4) holds, i.e. £11— < £,, as €17 < {13 < {3 then £33— < {,, and therefore (3) does not hold for ¢,
ie. 523 Y fél_' < fo.

LEmMMA 6.48. Consider ¢, + g < g1, 2 F 95 < g2, and e3 = £ v & such that &5+ g{ v g5 < g1V ga.
Then (obs¢, (¢191) A obsg, (¢292)) = obse, (e3(91 v 92))-

ProorF. Suppose ¢; = ([(11. (12]. [(13. (14]) and &5 = ([Lo1, Lop]. [L23. Loa]).
Then &1 v £y = &3 = <[[|| \/[)1 [ Y[)g} [[13 Y [[5.[” \/[Q]]>. Also consider é' = g<(ql,€ ) =
<[{1,1 [1/1] [[u- [()J>" 2 = g<(92» fo) - < {51 z/z] [[U- [()J>: and“'jé = g<(92,\‘/ig3» €o) - <[ ] [[u- [()J>'
If g1 = €1 and g = {,, then €5, = £ v {2, {5, = €z and €1, = {4. Also 0§, = {3 \/52, {’21 = ¢, and
f{l = f].
If g1 = ? or g2 = {5 (the other case is analogous) then 3, = ¢, and, {1, = {, and {3, = ¢, such that
by < €o. Also £, = L, ), = {5, but €§; = L. Therefore €5, = {1, v €}, and €5; < £1; v €5;.

We know that
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(1) b3 v €] < by ALYy,
(2) 511 < €14 /\f{z, or
(3) [13 Y [{1 < [0 or

4) ti < C.

(5) Ca3 v €51 < Lag A5y,
(6) 521 < 524 /\féz, or
(7) €23 v €3, < £, or

(8) 2 < €.

We have to prove

(10) (€13 v C23) v O3y < (Cra v Caa) A L35,

(11) (611 v €21) < (Cra v Laa) A L5y, OF

(12) (613 v €23) v €35, < €, o1

(13) (611 v b21) < L.

(13) follows directly by (4) and (8).

(12) follows from (3) and (7) and monotonicity of the join.
By definition of evidence and interior, €5, < ¢, and €5, < {3,. Therefore, from (1) {13 < {14,
from (5) fo3 < {24 and therefore {15 v €33 < €14 v €aq. Also as {13 < ], and €33 < {7,, then
C13 v los < L1y v €y = €5,. By similar argument €5; < (€14 v €24), and also {1, v {5; < ¢5,. But then
63 < €}y v €3 < €5, and (10) holds. |

LEMMA 6.49. Consider ¢; + ¢ < o2, €2 F o < g3, and ¢35 = ¢, o~ ¢, such that ¢5 v g, < g3. Then
obsy, (¢3(g3)) = (obse, (¢192) A obsg,(£293)).

PrOOF. Suppose ¢, = ([(1, (o], [(3,(4]), e0 = ([L5. (6], [, (5]).
105 ey = MN[0, ), [0 v U5, Lo A6, [£7, s ]) = ([61, o A La Al Mg [0y C3 v Cs v (g, (s])

Notice that as 3 < €; v {3 v {5 v {7 then ¢, | <] ¢35, and as €7 < €1 v €3 v €5 v {7 then &) | <] 5.
What we have to prove is equivalent to prove that

(mobsg, (¢1g2) V ~obsg, (¢295)) = —obse, (3(gs))

If ~obs,, (¢192) and as ¢; [ <] ¢3, then by Lemma 6.47 —obsg, (¢5(g3)) and the result holds. Similarly,
if mobs, (¢293) and as ¢, | <] ¢, then by Lemma 6.47 —obs, (¢5(93)) and the result holds.
[m}

LEMMA 6.50. Consider ¢; + ¢ < a2, €2 F o < g3, and ¢35 = ¢, o= ¢, such that ¢5 + g, < g3. Then
(obs¢, (¢1g2) A obsg,(¢293)) = obsg,(¢3(g3))-

PrOOF. Suppose ¢, = ([(1, (], [(3,(4]), e0 = ([L5. 6], [, (5]).
g o8 g = A<([[1-[ZJ3[[3\/[5-[4/\[‘0J,[ As]) = ([0, ba Ay Al ML), [Cr v U3 v U5 v €7, L3])

By definition of the transitivity operator, {1 < {5, {1 < €4 A €, and €5 v €5 < {s.

Let us consider ¢] = 9<(92,Co) = ([L1. 0], [Lo. Lo]), &) = € = (g3, Lo) = ([LE )], [ (o, (o]) We
know that

) &y & <l AL},

(2) O <l A fé, or

(3) t3v €] <{,or

4) 6 < L.
5) brv & < s AL,
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(6) ls < g A fé, or

(7) £7 v €L < £, or

(8) €5 < £,.

We have to prove

(10) (L1 v b3 v ls v by) v b5 < Ly A L5,
(11) 51 < fg /\fé, or

(12) (t1 vl vits v ly) vl <€y or
(13) £, < €.

Notice that if g5 = ? then ¢{ = {, and therefore by (4) {; < £;, and by (3), {5 < €. Also £; = L
and therefore ¢f < €7 < €5.If g5 = €, then ¢ = ¢, = € and {; = {3 = ¢, but we know that {; < {3,
and therefore ¢; < £{ and €% < 5. Also as {3 < g then {5 < &,

We also know that £3 v {5 < {3 and by definition of intervals £; < {s. We know that £; < £;. By
(5) €7 v €5 < €. By (6) €5 < 5. Also €5 < £ and (10) follows.

We know that £; < {5 and that {; < ¢; therefore (11) holds. By (4), (3), (7), (8) and because £ < £,
by definition of interior, (12) holds. Finally (13) holds by (4).

O
LEMMA 6.51. Consider 1 + ¢; < g2, €2 F 92 < g3, and &5 = ¢, o= &, such that &5 + gy < g3-
Then (—obsg, (¢192) V —obsg, (¢293)) &= —obsg, (¢3(93))-
Proor. Direct by Lemmas 6.49 and 6.50 . O

LEMMA 6.52. Consider ¢, and ¢| = &, ¥ (¢, o= &3), for some ¢, and ¢5. Then ¢ | <] ¢/

Proor. Suppose £y = <[[1. [Z] [[3. [V4]>, & = <[[‘5. [2]. [[7. [3]>, and Eq = <[[(). [Vl()]. [[‘11. [u]>
e1 0% &3 = AN([ls, 6], [€7 v Co, L Al1o], [€11. €12]) = ([€5, €6 A Ls A L1 AL12], [C5 v &7 v Lo v €11, C12])
e2v (105 e3) = ([Liv s, by (Lo Als Ao A1) [E5 v s Uy v Lo Cr, Loy Cro)).

But €7 < €3 v {5 v {7 v €y v {11 and therefore, ¢; | <] ¢].

|
LEMMA 6.53. Consider ¢, + g < g1 and ¢| = ¢, v (¢, 0~ &3) such that | v g5 < go.
Then —obsg, (¢1g1) = —obse, (¢1g2).
Proor. By Lemma 6.52 and Lemma 6.47 the result holds immediately. O

LEMMA 6.54. Consider ¢ v g] < g1, €2 F 94 < g2, and 3 = ¢, v ¢, such that &5+ g v 95 < g1V ga-
Then &1 LSJ £3.

Proor. Suppose & = <[[1 {_?] [[3, {1]>,("2 = <[[5. [(,]. [{‘7. [g]>, then
e3 = [ty v U5, Co v L], [C3 v €7, Ca v L]).
As €3 < €3 {3 v €7 therefore, ¢, | <] ¢; and the result holds. ]

LEmMA 6.55. Consider ¢, + g1 < g1, &2 F 95 < g2, and e5 = £,y ¢, such that 5 + gl’mgz.
Then (—obsg, (¢191) V —obsg, (¢292)) & —obsg, (¢5(g1 ¥ g2)).
Proor. First we prove the = direction. By Lemma 6.54, ¢; [ <] ¢5. Suppose obsg, (¢1g1) does not

hold (the other case is analogous). Then by Lemma 6.47 the result holds immediately. Then for the
& we use Lemma 6.48 and the result holds immediately. O
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LEMMA 6.56. Consider ¢’ > tY € T[U], and i, such that tY u and —obsg, (¢"), and Yk > 0, such
that tV | u |i> kU ', then Ve,
(1) YoU" € dom(u’)\dom(u), ~obsg, (¢ > p’(0V")).
(2) YoV € dom(p’) N dom(p) A p'(0V") # p (oY),
(a) —obs¢, (¢ > (V")) , and
(b) ~obs, (¢ > ' (0V")) .

Proor. We use induction on the derivation of tV. The interest cases are the last step of reduction
rules for references and assignments.

Case (t = z‘log, ‘q:’g‘, , €2u). We are only updating the heap so we only have to prove (a) and (b).
Then
U 9:Ui ’

¢ . L~ ~
€10y = o, U > unity | ploY = &'y (@lg. v g)) = U']

where ¢/ = (e, 0= iref (¢1)) ¥ ((¢'¢ ¥ ilbl(¢,)) o= &5 o= ilbl(iref (¢,)) and if pu(oV’) = cu :: U’, then
¢'e | <] ¢. For simplicity let us call ¢} = (¢, o< iref(e;)) and ¢, = &3 o= ilbl(iref (¢1)). We have to
prove that (b) —=(obs,, (;"lzge/l(U’)). As —obsg, (¢), by Lemma 6.55, wobs¢, ((¢cv ilbl(¢)) (g v ).
Then by Lemma 6.53, =(obs,, (z"lzzzl(U’)). Next we have to prove that (a) obs,, (¢ > 1(0Y")) is not
defined. Consider that u(oV") = cu :: U’. We know that obs,, (¢/c¢’g.) is not defined, and that
¢’ | <] ¢, therefore by Lemma 6.47, obsg, (¢U’) is not defined, concluding that obs,, (¢ > (o)) is
not defined as well and the result holds.

Case (t = reff{/ esu). We are extending the heap, so we need to only prove (1). Then

ref cou | p »i)og, | uloV - &' Wy ¢lg.) = U']

where 0V ¢ dom(p), e’ = ¢5 v (¢'g. o= /). We need to prove that obsg, (¢ > ¢’ (u'v ¢'g.) : U’) does
not hold. In order to do so, we will show that obs,, (ilbl(¢")label(U”)) does not holds, which follows
directly by Lemma 6.53.

LEmMMA 6.57. Consider ¢’, such that obsg, (¢’c¢'g.) does not hold, then then Vk > 0, such that
9 k., , . / /
t/ | i = K |l then if i <5 o, then pi %5 i)
Proor. By Lemma 6.56 we know three things:

(1) YoU e dom(p;)\dom(y;), obse, (¢ > ,u{(oU/)) does not hold, i.e. new locations are not observ-
able.
(2) ¥oU" € dom(y) N\ dom(p;) A if(0”") # (o),
(a) obsg, (¢ » yi(oU')) does not hold, and
(b) obse, (¢ > ,ulf(oU')) does not hold.
i.e. for all updated references they have to be previously not observable, and by definition
therefore related, and second they are still non observable after the update, and by definition
those locations are still related under ¢.

Therefore /] z’gﬂ 5, and the result holds. O
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LEMMA 6.58. Consider simple values u; € T[U;] and

(b1, c1uq = U, 1) ~]§ (P2, coug = U, pig) : U.
Ifei v g S U, then

(1, (el v e)(wr v g) = U, pp) “?0 (Pa, (v e2))(uz v 9) = U, o) : U

Proor. By definition of related values and Lemma 6.55 (observational-monotonicity of the join),
considering that the label stamping can make the new values non observable and that join of
evidences does not introduce imprecision. O

LEMMA 6.59. Suppose that ¢; <¢, @i, ¢ > prot7 b U(e:tY) € T[U ¥ g], fori € {1,2}, where

obsg, (§i'cdi’g.) does not hold, and either obsg, (. ¢7l gL) orobsg, (¢/g) does not hold. Also consider
two stores i; such that i zko Lo

Then <¢1,Pr0t" CACLIOINTVESS <¢2,Pr0t“ B (e2t™2), o)

PrOOF. Suppose that after at least j more steps, where j < k, both subterms reduce to a value
(let us assume no cast errors are produced, otherwise the lemma vacuously holds):

Wl T
Therefore:
prot/¢1'(1tV) | 4]
— J prot/’,
¢ 1 NN S Vv ’

i (] V‘“i)(“i\/gi):UVg“li
As the values can be radically different we have to make sure that both values are not observables.
If obse, (¢i.c$i.gc) does not hold then the values are not observables because the security context is
not observable. Let us assume that obs;, (¢;.c¢;.g.) holds, but obs,, (¢/g) not. Then by Lemma 6.55,
obsg, ((c]' v é‘,f)(laﬂi)zl(U) v g)) does not hold, and therefore obsg, (¢; > (¢ v /) (u; v g}) = UV g)
does not hold.

g, U

B (el wi) | i

Now we have to prove that the resulting stores are related. But by Lemma 6.57 the result
immediately.
O

LEMMA 6.60. Suppose that ¢; <¢, ¢;, ¢i <¢, 97, <¢1,t1,p1) [ (¢a, ta, o) = C(U’), and that
A prot?;guggé{’(( itV e T[U Y g), fori € {1,2}. If ¢, = ~[0 @2, and both obs¢,_ (¢]g;) hold or does not
hold,
then (¢r, prot” , 7/ (e1t"), i) =5, (o, prot”s ¢ (cot]), pz) : C(U'Y g)

Proor. In case that combining evidence may fail, then the Lemma vacuously holds. Let us
assume that combining evidence always successes. Consider j < k, we know by definition of related
computations that

e I g
then pf zéo 1, and by Lemma 6.61 p; — . If t/U are reducible after k — 1 steps, then the result
holds immediately by (Rprot()). The interest case if t;U are irreducible after j < k steps:
Suppose that after j steps t/U" = v;, then (¢, vy, p1}) zlgo_j (P2, V2, i3y : U’
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Therefore:
9, U

’
prot}_;g; Vet g

(e ui) | g

7

i LU
=7 prot]
“idi

¢; "= 7 ~ 7 = ’
= (e wivgl) UV g |

If both obsg, (¢; > v;) do not hold, then by Lemma 6.63, obsg, (¢/'u; :: U’) also does not hold. Fi-
nally by Lemma 6.55 obsg, ((¢/v¢!)(label(U) v g)) does not hold and therefore the values are related.

Let us consider that obs,, (¢ > v;) holds and that obs;, (¢ > ¢/'u; :: U’) holds (otherwise we follow
by the previous argument). If both obs;, (¢;.c¢;.g.) do not hold, then the values are not observables
because the security contexts are not observable.

Let us assume that both obs,, (¢;.c¢;.g.) hold, but obs,, (¢/g) not. Then by Lemma 6.55, obs, ((¢/v

1'[)(%I(U) v g)) do not hold, and therefore obs, (¢; > (¢ v £/)(u; ¥ g7) : U ¥ g) do not hold.

If obse, (¢i.c¢i.gc) and obsg, ((¢/' v ¢/)(label(U) v g)) hold, then the result follows by Lemma 6.58,
and by backward preservation of the relations (Lemma 6.43).
|

LEMMA 6.61. Consider term ¢ >tV € T[U], store yu and j > 0,
¢ .
such thattV | p v+ Jt'V | i’ Then p — y'.
Proor¥. Trivial by induction on the derivation of tV. The only rules that change the store are the
ones for reference and assignment, neither of which remove locations. O
LEMMA 6.62. Ifp <¢, ¢" and ¢’ <;, ¢, then ¢ <, ¢".

Proor. Trivial because if ¢ is not observable, then ¢’ is not observable as well by definition of
<¢,, and therefore ¢’’ must also be not observable. O

LEMMA 6.63. Consider ¢p; >v € T[U], and ¢ + U < U’. Suppose cv :: U’ Vo e s U If
—obsg, (¢; > v) V —obsg, (¢U’) &= —obse, (¢; > c'u : U’).

Proor. Direct by Lemma 6.51. O

Next, we present the Noninterference proposition, which naturally implies the Security Type
Soundness proposition (Prop 2.24) presented in the paper.

PROPOSITION 6.64 (NONINTERFERENCE). If ¢! > i € T[U], y; € STORE,  + p;, T = FV({), and
Vk > 0’ ¢i Sfo ¢;’ I'r <¢1’ ,01, ,ul> zlgo <¢Z’ ,02, ,UZ> P then <¢1a pl(f)’ Hi, zl)o> [ga]k <¢2, Pz(f), H2, :> G(U)

Proor. By induction on the derivation of term f € T[U]. Let us take an arbitrary index k > 0.

Case(x). i=xYsol ={xV}.T+ (P1, P15 1) z’go (P2, P2, pt2) implies by definition that
($1, p1 (xY), 1) z’;o (P2, p2 (xY), Uz) : U, and the result holds immediately.

Case (b). = b,. By definition of substitution, p1(by) = p2(by) = by. By definition, (¢, by, y11) z’go
{(¢2, by, p12) : Bool, as required.
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Case (0). f = ogl where U = Ref,, U;. By definition of substitution, p; (oU‘) = pg(o 1) = oU1 We
know that ¢; » ogll € T[Ref,, Ul]. By definition of related stores, (¢, 0 0, ,pl) ~ ‘ (¢2,0 0, ,,uz) :
Ref,, Ui as required, and the result holds.

Case (1). tV = (A%xV1 %), Then U = Uy~ , Uy,
By definition of substitution, assuming xU' ¢ dom(p;), and Lemma 6.42:

7> pi(tY) = g7 > (A%x", '( )y € T[U]
Consider j < k, pf, py such that y; — pf and p] =) M3, and assume two values v; and v,
such that (¢, v, u1) zjgo (P2, V2, 13y = U{. Consider U’ = U{’AH»IUZ" and ¢, 9, ¢/, such that

9 —_—
e1k Up—43U; S U’ that e, - U < U/, and that ¢/ + ¢’g. v g < g”
For simplicity, let us annotate U, = U’ ¥ g”’. We need to show that:

. (1, 21 (A%exU py (£12)), @Y ev1,pp)
S (o O9xVpy () @7 cym, )+ C(UY)

Each vj; is either a bare value u; or a casted value ¢;u; :: U/. In the latter case, the application
expression combines evidence, which may fail with error. If it succeeds, we call the combined
evidence ¢/;. The application rule then applies: it may fail with error if the evidence ¢); cannot be
combined with the evidence for the function parameter. Every time a failure is produced product of
evidence combination, then the relation vacuously holds. We therefore consider the only interesting
case, where reductions always succeed. Then:
£1(Wexpi (£92))g @Y ¢ ui | pf
¢ 9" Uy
— protg/g ¢7 (cp(Learws = Up xU]pi(8%))) | i}

¢ " . /
2 protl ¢ (e[ = Uy /x1pi(6%)) | i
where ¢ = (¢/(¢'g:. v 9), 90), €. = (¢le v ilbl(e))) o= e/ o= ilat(e;). If obsg, (¢}) do not hold, then
by Lemma 6.55, obsg, (¢;) do not hold. Then ¢; <,, ¢;’, and by Lemma 6.62, ¢; <, ;.
¢r, €5 and ¢,; are the new evidences for the label, return value and argument, respectively. We
then extend the substitutions to map x"! to the casted arguments:

q

pi = pilx™ o euy = Uy)
We know that (¢, v1, p1) z”éo {p2, V2, pt3) and consider ¢ > u; € T[Uy;] then ¢,; + Uy S

Up and ¢,; = (£2; 0% &) o< idom(e,), therefore using Lemma 6.45 {1, (c,1u1 = Up), 1) kféo
(g2, (cazup = Ul),,ll§> 1 Uy

So as pi; — ) then by Lemma 6.41, T, xUt + (¢, p}, u}) é ($2, P2, H2)-
We also know that ¢’ » p;(tY2) € T[U,]. Then by induction hypothesis:

(s L), 1)) =0t (s 3t p13) = C(Up)
Finally, by Lemma 6.60:

' (¢, prot /q v Q{)”( /7p1(tUZ)) K1)
~y, ($2.prot!, P (e 3t ) - C(UR)
and finally the result holds by backward preservation of the relations (Lemma 6.43).
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Case (!). tV = 1%¢% UigtUl Then U = Uy v g.
By definition of substitution:

U) — \Ref, Uy

pi(t epi(th)

We have to show that
(1,170 Ve py (¢97), pr)y
K (o 1R Vi (£9), ) - C(UL Y g)
By Lemma 6.42:
¢! s 17 Ui p (197 € T[U,L ¥ g]
By induction hypotheses on the subterm:

(1 pr(27), ) R, (2, pa(t), p2) : CLUY)
Consider j < k, then by definition of related computations

, ¢; - U k—i . U’ U’ k—i U’
pit ) | =6 g = pi =y A Girred () = (ot i) = (Banty s 1g)  UY)
Where U/ = Ref, U/’ If terms tl-U " are reducible after Jj =k — 1 steps, then

, ¢ Ul
IRefy Urepi (BU0) | g +— J1ReT0 U gtil ' | i and the result holds.
. Ul aa g / i
If after at most j steps t; ' is irreducible it means that for some j* < j, Refy Urep, (291) | gy +—
J1Refy Uty |l If j/ = j then we use the same same argument for reducible terms and the result

holds.
Let us consider nOW] < j. Then {(¢y,v1, 1) = - (P2, vz, 13y : U{. By Lemma 6.10, each v; is either

7"

Uy
a location (o, / ) or a casted location ¢;(0; g ) U/. Let us assume they both are a casted location

(the other cases are analogous). In case a value v;; is a casted value, then the whole term p; (tY) can
take a step by (Rg), combining ¢ with ¢;. Such a step either fails, or succeeds with a new combined
evidence. Therefore, either:

’

¢i o
pi(tY) | p;i —> error

in which case we do not care since we only consider termination-insensitive noninterference, or:

¢ Ref, U
pi(tU)|y Ly J'+1gRefy llzolq” |y

¢i .U . ,
—> 1 protl’lbl(l gy @1 iref (1)) |

"

with v] = y{(oisj,’} ) = eyl 2 U, @Y = ((@le v ilbl(e]) (Plge v 9!'). Plge v 9)- By Lemma 6.55, if
—obsg, (¢;) then —obsg, (¢;"). Then by Lemma 6.62, ¢; <¢, ¢;'. As {1, v1,11) =, T oy va iy U,
then by Lemma 6.51 either both ongu(llbl(e',-)(label(U) v g)) holds or do not hold. Finally as
($1,v1, 1) zléfu_j’ (P2, 03, uy) : U{, by Lemma 6.59,
(¢1, Pmt,lbl( )g”le/(iref(ﬁ,)U{)a M
S uaprot e85 Giref (-))03). ) : C(UY)
and finally the result holds by backward preservation of the relations (Lemma 6.43).
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9.U{ .
Case (:=). tV = ¢, t1U1 :=1(L./ fztzUz. Then U = Unit, .

By definition of substitution:

g,U{
pi(tY) = cipi(t™) =", eopi(t?)
and Lemma 6.42:
, 9.U{ . .
Pio etV =L, opi(tY2) € T[Unit, ]
We have to show that

9.Uf .

(B1,e1p1(tV) = e eopr (tY2), py)
9.U{

z’{SD (P, c1p2(tV) i= Y 22 (t%2), p2) + C(U)

By induction hypotheses
(P11 (7). ) #F, (B2, p2 (1), pr2) = C(U)
Suppose j; < k, and that p;(t"") are irreducible after j; steps (otherwise, similar to case !, the
result holds immediately). Then by definition of related computations:
¢ i s
pit") L =i | = py g s A r o) T (o v, ph) Uy

By Lemma 6.61 p; — i, and pf zl;o_jl 5 then by Lemma 6.41, {¢1, p1, p1) zltfo_jl (P2, p2, 3). By
induction hypotheses:

(b1, p1(t2), 1) =5 {2, p2(t), ) : C(Un)

Again, consider j, = k — jy, if after j; steps p;(t'2) is reducible or is a value, the result holds
immediately. The interest case if after j; < j, steps p; (tU2) reduces to values v/

o, it P
U. Lojs J17J, J1—J.
pi(t™) | i v 2op L = g 7y Aol gy T (G v ) 1 Us
Then
¢" : v 9, u/ k—ji—j’
U L . g1 . L v/
pi(tU) | i oo e = o] |l Al AR

Now v; and v} can be bare values or casted values. In the case of casted values we can combine
evidence, which may fail with error. We assume that all evidence combinations succeed, otherwise
the relation vacuously holds. As both values v; are related at some reference type, then by canonical
forms (Lemma 6.10) they both must be locations oUi for some U; < U;. We consider when the
values are observable and the locations are identical (otherwise the result is trivial):

‘(7’Ul’ ’ ’”
810 =, £20; | Hi
@ v’ 9.U/
2 . 1t N ”
i £1,0g" =, e | pg
9}
— U unity | pl”

Where 1§ = uf/[o% v /1 (u} ¥ (¢2. ¥ 9)) = Uf]. As

1
k—j1—j,
(P01, 17) =, IRy, 0h, 1)y - Uy then by Lemma 6.45,
k—ii—i’ 31 ’” Ao

(Buo ey = ULty g 0 (o eluy = ULy - UYL As ek @lge v g < label(Uy) and ¢/ = /¢,
by Lemma 6.58,

G T @ ) = U
~e, e Ws Y (@lee Y 9)) = UL p)

o
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Also if —=obsg, (¢;) = —obs,, (¢;) and therefore by monotonicity of the join —obsy, (e‘fj-l?lzzl(Ul’)).
Therefore if the values where different but context not observables, now the new values are going
to be not observable as well, independently of the context. Then V, ¢;" ~ ¢

P (¢1,é”(u1v(¢ SLVQ)) U/, i’y
R A A C AT ER T
k —1=Jy= 2

As every values are related at type Unit, we only have to prove that p”’ ,ul , but using
monotonicity (Lemma 6.46), it is trivial to prove that because either both both stores update the
same location o' to values that are related, therefore the result holds.

Case (ref ). tV = refg1 ¢tYl. Then U = Ref, Uj.
By definition of substitution:
pi(tU) = reff{l é'pi(tUl)
and Lemma 6.42:
¢} > ref cp;(tY1) € T[Ref, Uj]
We have to show that )
(1, ref epy (tU7), )
z’tfo (P2, reff{l epa(t97), o) : C(Ref . Uy)
By induction hypotheses:

(G1. pr(tY), ) ~E (2 p2(tV), 1) - C(UY)
Consider j < k, by definition of related computations

, . . U U . U

U, k . 3

pilt) | i vt | = py g g A (irred (7)) = (ot pp) ~p ) (banty ' ) 2 UY)
U’ . .

If terms ¢t; ' are reducible after j = k — 1 steps, then

reff{l f‘pi(th) | pi li) jrefgl z‘t;U{ | p; and the result holds.

If after at most j steps tiUl/ is irreducible, it means that for some j* < j reftU/l epi(tY) | i —>
7 reff{I ¢v; | pi. If j = j then we use the same same argument for reducible terms and the result
holds.

Let us consider now j’ < j. By Lemma 6.10, each v; is either a base value u; or a casted base value
eiu; = U{. In case a value v;; is a casted value, then the whole term pi(tY) can take a step by (Rg),
combining ¢ with ¢;. Such a step either fails, or succeeds with a new combined evidence. Therefore,

either:
¥
i
pi(tY) | p; > 7 error
in which case we do not care since we only consider termination-insensitive noninterference, or:

pit) Lp DI e g
¢’ 1 OUl |,U{/

with, i’ = pi[o% e/ (u; v $ige) = Ul] Where el = el ¥ (¢le o= ¢/). We know that if u; € T[U;],

then ¢; + U; < Uy. Also, as ($1,v1, p1) =, (gbz, Ug, pi3) : U] then by Lemma 6.45,

(1, e7ug = Up, pp) = ;j (P2, eugy : Ul,pz) : U/ and as (@le o= ¢/) ¢.gc < label(Uy), then by
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Lemma 6.58, Lemma 6.53, and Lemma 6.46,
(e (¥ $120) 5 U ) > 7 2 (ool (ua ¥ $30) 5 Un, ) = U

Also if —obsg, (¢;) = —obs, (¢;) and therefore by monotonicity of the join —obs,, (e‘{’l;l\;l(Ul)).
Therefore if the values where different but context not observables, now the new values are going
to be not observable as well, independently of the context. Then
VLB S B B Y $h2) = Ui i) ST (G Y ) s Uiy < UL,

By definition of related stores p{’ zlzo_j / uy'. Then by Monotonicity of the relation (Lemma 6.46)

uy zl(fo_jl_z yy' and the result holds.

Case (@) tU = FltUl @7 thUz

By definition of substitution:
pi(tY) = e1pi(t) @7 cupi(t?)
and Lemma 6.42:
¢7 > c1pi(t™) &7 £,pi (1) € T[U]

We use a similar argument to case := for reducible terms. The interest case is when we suppose
some j; and j, such that j; + j, < k — 3 where:

o » »
U, i k k
pit™) L V= on | = pp = 7 A g, o, 1)) %7 (o, va1, 1) U

. L L

U, i k k

pi(t™) | i = v | = = ) A (v, ) =T (b v ) Us

By Lemma 6.10, each v;; is either a boolean (b;5),,, or a casted boolean F,‘j(b,‘j)g;j 2 Uj.In case a

value v;; is a casted value, then the whole term p;(tV) can take a step by (Rg), combining ¢; with
¢;;. Such a step either fails, or succeeds with a new combined evidence. Therefore, either:

IR
pi(tY) | pi —> " 2error
in which case we do not care since we only consider termination-insensitive noninterference, or:

R TG R
sy J1t+j2+2 Lci,l(bil)g;l @9 ‘C;Z(biZ)g;Z | /l:,

1

" ¢l(bi)g; = Booly | pf’

with b; = by [®])bia, ¢/ = ¢/, v ¢/, and g] = g}; V g},. It remains to show that:

’ k—j1—ja— ’
1, €1(01 FARY 00ly, 1) =4 3 2, E5(02) gt 2 00ly, li5 ) : BOOIl,
(1, (br)y; = Booly, puf'y <K (6, 1 (by) ;s Booly, 1y : Bool

If ~obsg, (¢;), then the result is trivial because the resulting booleans are also related as they are
not observable.

If obsg, (¢;), then by Lemma 6.45, (¢, ("Il(bll)ggl :: Boolg, p") z’tfo (P2, &, (1721)%1 :: Boolg, py'). If
—-obsg, (ilbl(¢],)g) or ~obs,, (ilbl(¢},)g), then by Lemma 6.55, mobs,, (¢/g) and the result holds. If
both obsg, (ilbl(¢},)g) then by; = byy and by = by, so by = by, and the result holds.
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J
Ui —, U
Case (app). tV = itV @, 7" etV

with ¢, + U; < Syq —g Si2, &2 F Uy S Upp,and U = Uypy ’\7g

U“—> Uiz

We omit the @, operator in applications below.

By definition of substitution:
pi(t) = cpi(t™) e2pi(t™)
and Lemma 6.42:
B> c1pi(t7) eopi (%) € T[U]
We use a similar argument to case := for reducible terms. The interest case is when we suppose

some j; and j, such that j; + j» < k where by induction hypotheses and the definition of related
computations:

#;
pi(t") | V> Toy | pf = pi =~ llz A {1, v11, 7)) = kA (¢2, 21, 1) : Uy

&, v P
pi(t") | pp =5 P | pf = !~y T g A (v ) xp T A po, vz, ) Up
Then

P i
pi(tY) | i V=T oy v | g
If obsg, (¢; » vi1) then, by definition of ~,, at values of function type, using ¢, and ¢, to justify
the subtyping relations, we have:

(¢1, (e1011 €2012), 1)
k—j1—j ~
xp T Ao, (1021 2022), ) C(Urz v 9)
Finally, by backward preservation of the relations (Lemma 6.43) the result holds.
If —obs¢, (¢; > v;1), and we assume by canonical forms that v;; = ¢ (Agi’x.ti)gi :: Up and that

Via = €iouUjp : Uy (and that evidence combination always succeed or the result holds immediately),
then,

(e1911 0i2) | py
o b (el (Mixty)g, ehuiz) | py
— 1 prothl’(Ulf)q @Y (icod(el,)t]) |
Where ¢/, = ¢;; 05 ¢, ¢l, = ¢ 0 and ¢ = (¢/'($]g. ~}71’)~}71’/>’ f'f, = (¢je v ilbl(e],)) o= ¢/ 0%

ilat(¢},)).
If —obsg, (¢;) then —obs, (¢}) and by Lemma 6.55 and 6.53, —obsg, (§]'). As ¢/, = ¢;; o= ¢1, by

Lemma 6.51, either both ilbl(¢/,) are observable or not (the latter when —obs,, (ilbl(¢;,)label(Uy))).

If —obs,, (ilbl(e;; )IZEEI(UI)) then similar to the context case, ~obs¢, (¢;).
Finally by Lemma 6.59,

9c,U
<¢1,Pr0t,7lbl( lf)gl "(icod(e1)) ), pi")

k—j1—j 9¢'s Uz
msy 1P (gSz,protl’lbl( 5,5 icod(e5,)8), ') = C(Urz v 9)

o

Finally, by backward preservation of the relations (Lemma 6.43) the result holds.



96 Matias Toro, Ronald Garcia, and Eric Tanter

Case (if). tY = if? £tV then et else 5tV3, with i tY e T[U{], g’ = label(Uy), ¢, = (¢i.c v
ilbl(c1)), ¢i = (e[ ($'ge v 9'). ('8 v 9)) $7' > tV2 € T[U], ¢} > t% € T[Us] ¢, + Uy < Booly and
U=(UvUs) vy
By definition of substitution:

pi(tY) = if? £, p;(t%) then £,p; (t%2) else 5p; (t%)
We use a similar argument to case := for reducible terms. The interest case is when we suppose

some j; and j; such that j; + j, < k where by induction hypotheses and related computations we
have that:

P ; k—j k—j
pi(t") | i = Mo L pf = g =y Ay e ou, pp) 2 (e vz ) < Un
By Lemma 6.10, each v is either a boolean (b;;),, or a casted boolean ¢;, (bil)ggl :: U;. In either
case, U; < Bool,, implies U; = Boolg{. In case a value v;; is a casted value, then the whole term

pi(tY) can take a step by (Rg), combining ¢; with ¢;,. Such a step either fails, or succeeds with a
new combined evidence. Therefore, either:

1+1

¢
pi(tU) | pi — " error

in which case we do not care since we only consider termination-insensitive noninterference, or:

pi (1Y) | i ,ﬂ Jitlifg f';l(bil)ggl then £,p;(t%) else e5p; (t%) | y}

If obsg, (¢; > vi1) does not hold, then by Lemma 6.63 obsg, (¢; > ¢/, b;; = Boolgg) is not observable.

Let us assume the worst case scenario and that both execution reduce via different branches of the
conditional.
Consider ¢’ = (¢’ v ilbl(c])) (¢ ge ¥ 91)), (P'g. v 9))- It is easy to see that if ¢; is not observable,
then as <, ¢; is not observable, and therefore by Lemma 6.55, obs,, (¢;’c¢;'g.) does not hold.
Therefore ¢; <¢, ¢;". If obs, (¢/;Booly) does not hold, then also by Lemma 6.55, obs¢, (#'c¢}'gc)
does not hold as well. Then

9 9,U .
pi(tY) | J1+2Pr°t‘i7lbl(,<;l)g;1¢i'(f'z,01(tUz)) |y
¢ g.U
p2(tY) | pp > ]1+2Pr°t}71b1(<«gl)gél¢§'(<“1=Pz(tU3)) | 5
But because obs¢, (#»¢/,b;1 :: Booly) does not hold then either obsy, (¢.c¢.g.) or obse, (ilbl(¢/; g))
does not hold. Then as ¢; <¢, ¢;" by Lemma 6.59,

9, U 7 ’ 9, U ’” g ’
(¢1, proty, et (221 (t%)), p}) =5, (b2, |orot‘,7,b,(,h)gé1 5 (e3p2(t%)), 1)
and the result holds by backward preservation of the relations (Lemma 6.43).

Now consider if obsg, (¢ > v;;) holds, then obsg (¢ > ¢/ b;y :: Boolg;) may hold or not. If its
not observable we proceed like we just did for the non-observable case. Let us consider that
obs, (¢ > ¢/, biy 2 Booly) holds.

Then by definition of ~,, on boolean values, b1; = by; Because by; = by, both p1(tY) and p,(tY)
step into the same branch of the conditional. Let us assume the condition is true (the other case is
similar):

Then by induction hypotheses ($1, p1 (t%2), u}) z’go (B2, p2(tY2), 13), then as ¢; <;, ¢}, by
Lemma 6.60,

g, U X k g, U .
(@1, Protiy; g, 1 (221 (87)), 1) 4, (s PPOiyy g0 65 (23p2(E7)), 1)
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and the result holds by backward preservation of the relations (Lemma 6.43).

Case (prot()). Direct by using Lemma 6.60.
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