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Abstract. Determining the development effort (cost and time) is one of the main challenges of the 
software projects formulation and management. In order to address such a challenge, several effort 
estimation models have been proposed since the ‘80s, as a way to envision the software development 
effort before and during a project, and also reduce the project risks. As the use of these estimation 
models involves several requirements, a particular model is not necessarily suitable to support the 
estimations of every software company or development team. On the other hand, it is not easy for a 
software company to identify estimation models that are potentially appropriate for them. In order to 
identify the most prominent software estimation models and their characteristics, we conducted a 
systematic literature review on taxonomies of effort estimation methods, reported between 2000 and 
2017. The goals were mainly two: (1) determining the start-of-the-art in this area and (2) identifying the 
main variables used to classify these methods. Based on this review, we elaborate on how software 
companies can use these taxonomies and classification criteria to identify suitable methods to support 
their estimations, considering some particular features of the company.  

1. Introduction  
The first reports about software effort estimation methods1 were published in the ‘50s. Particularly, 
between the ‘50s to ‘70s this activity was done manually and based on expert judgement. As the software 
was becoming larger and more complex, the software engineering practices became more protagonist, 
including the effort estimation of the development of these systems. Thus, several software effort 
estimation models were proposed to deal with such a requirement; for instance Doty [HER77], SLIM 
[LAW91], Checkpoint [JOPN97], Price-S [PAR88], SEER [JEN83], and CoCoMO [BOE81]. Figure 1 
presents a timeline indicating the definition of the most prominent software development effort estimation 
(SDEE) methods. 

 
Figure 1. Timeline of the definition of the main SDEE methods. 

                                                
1 In this document we use the words “method”, “model” and “technique” as synonymous. 



 
 

The development of multiple SDEE methods during the first five decades (until 2000) helped this area not 
only to formalize, but also diversify the proposals, generating families of estimation methods. Today, the 
literature reports more than a hundred of SDEE proposals, grouped in several categories depending on 
the classification criteria being used. Regardless this variety, most of these methods cannot be directly 
used by software companies as most methods provide a general guide on how to conduct estimations. In 
order to get accurate estimations, a software company must choose a method and then adjust or 
configure it to make it representative of the kind of development effort conducted by the organization. 
Selecting an appropriate method and adjusting it properly is a complex task that most companies, 
particularly the small ones, are not usually able to perform given their lack of expertise and guidelines to 
perform these activities. 
 
Today, the use of an effort estimation model is more a need than an option for most software companies, 
since the projects are no longer trivial and the competence in this industry is high. For competitiveness 
reasons, the projects’ budgets should be accurate, which implies that the use of a SDEE method tailored 
for each software company is mandatory. A report of The Standish Group over 25,000 projects shows the 
consequences of not using a SDE method to support the software estimations [JOH06]. These 
consequences go from lack of competitiveness and the underestimations, to projects failures and 
eventually business failures. 
 
In order to reduce the complexity of identifying appropriate SDEE methods for particular software 
companies, we conducted a systematic literature review (SLR) following the guidelines of Kitchenham 
and Charters [KIT07]. This study identified the taxonomies and the classification criteria of SDEE 
methods, as a way to help software companies to easily discard inappropriate methods and also 
determine the potential candidates according to the companies’ features.  
 
The classification criteria allows software companies to pre-select families (or clusters) of SDEE methods, 
and analyze the potential suitability of each cluster depending on, e.g., if they require historical 
information, are based on expert judgement, require few or much calibration, or if they are public or 
protected (commercial). A company can reduce the effort to identify potentially suitable SDEE methods by 
analyzing the clusters. Therefore, the SLR reported in this paper intended to answer the following 
research questions: 
 
RQ1 - What are the main taxonomies of SDEE methods reported in the literature? Answering this 

question will allow identifying the taxonomies available to perform the pre-selection of techniques 
based on clusters. 

 
RQ2 - What are the most relevant classification criteria used in these taxonomies? Answering this 

question will allow determining the most transversal clusters according to the reported studies. 
 
This paper is structured as follows. Section 2 describes the methodology followed in this study to perform 
the SLR. Section 3 presents and discusses the results of this study, highlighting the findings. Section 4 
shows the implications of the findings for the industry and the academia. Section 5 presents the 
limitations of this study, and Section 6 shows the conclusions and the future work. 

2. Methodology  
In this SLR the author followed the process recommended by Kitchenham and Charters (2007) to conduct 
these studies in the software engineering domain. This process involves six stages (Fig. 2): (1) definition 
and review of the research questions, (2) definition of the search strategy and performing the search 



 
 

process, (3) selection of studies to be analyzed, (4) quality evaluation of the selected studies, (5) data 
extraction from the studies, and (6) synthesis of the results. Next we explain more in detail these stages 
and how they were conducted in this study.   

 

 
Figure 2. Protocol for conducting SLR in the software engineering domain (from [KIT07]). 

2.1. Research questions 
Table 1 summarizes the RQs and the motivation to explore them. Once defined the RQs, they were 
reviewed in order to determine how they would be answered. RQ1 is answered by describing the 
classifications obtained as result of the searching process and analyzing the structure of each of them; 
this is presented in Section 3.2. RQ2 is answered by identifying the classification criteria and aggregating 
them in a way that can be used by practitioners to determine the potential suitability of the SDEE methods 
to the context of their companies. The answer to RQ2 is presented in Section 3.3. 
 

Table 1. Research questions considered in the SLR. 

ID Research Question Motivation 

RQ1 What are the main taxonomies 
of SDEE methods reported in 
the literature? 

Determining the main taxonomies allows creating a more 
comprehensive view of the available proposals, and 
therefore, increasing the chances to find methods potentially 
useful for a particular software company, considering the 
clusters identified in these taxonomies. 

RQ2 What are the most relevant 
classification criteria used in 
these taxonomies? 

Knowing these criteria allows determining the variables that 
can be used as instruments for evaluating the potential 
suitability of a certain method, considering the features of a 
particular software organization.  

 
 



 
 

2.2. Search strategy   
The purpose of this stage is to find studies that help answer the stated RQs, and it involves three steps: 
the definition of the search terms, the definition of the literature resources (i.e., digital libraries to be used) 
and to conduct the searching process. Next we explain these steps. 

2.2.1. Search terms  

The definition of the search terms involved several activities in order to obtain the Query Strings (QS) 
used to retrieve the studies that help answer the RQs. These activities are the following:  
 

1. Identify the most relevant terms considered in the RQs. 
2. Identify synonyms or alternatives for these terms.  
3. Create the search terms connecting the terms with OR logic operators. This allows finding studies 

that matches with them.  
4. Compose the search terms with an AND operator. This allows finding studies having variants of any 

search term. 
5. Generalize the search terms, if possible, using a wildcard.  

 
Table 2 shows the main query string (QS1) used to look for papers on software effort estimation, and a 
refined query string (QS2) that select the papers that refer to methods, classifications or taxonomies. 
 

Table 2. Query strings used in the SLR. 

Query String - QS1 

(Software OR system* OR project* OR development OR application*) AND 
(effort OR cost* OR siz*) AND 
(Estimat* OR Predict* OR Assess* OR Forecast* OR calcula* OR siz* OR measur* 
OR dimension*) 

Refinement Query String - QS2 

AND (Taxonom* OR Categor* OR Class* OR Process* OR strateg* OR approach* OR 
method* OR algorithm* OR Metric* OR Unit* OR Review* OR Survey* OR Analys* 
OR Report* OR Ensemble OR Systematic) 

2.2.2.  Literature resources 

Four sources of literature were selected based on their relevance for this SLR: IEEE Xplore, ACM Digital 
Library, Science Direct and Springer Link. The searches considered only publications reported in these 
libraries since January 2000 to May 2017. The search process in these libraries was automated using a 
robot, as a way to reduce the effort of conducting the searches and retrieving the resulting information. 

2.2.3.  Search process  

The search and retrieval process was done in two steps by the software robot. In the first one the robot 
used the QS1 to build the master dataset that then was used in the rest of the SLR process. Given that 
not all search engines of the digital libraries support a complex query string with logical operators and 
wildcards, the robot created all the combinations of search terms and resolves all wildcards to concrete 
terms, and then trigger the search for each combination. The robot processed the HTML in the search 
responses, identified the articles included in the search results, extracted the metadata of each article, 
and stored it in a text database in an homogenized format. This homogenization and completion of 



 
 

metadata was required due to every digital library provides different metadata for the query results. Such 
a metadata includes: library ID, paper title, abstract, authors, keywords, doi, publication type, year, 
publisher, and URL to download the paper. 
 
In the second step, the robot applied the QS2 on the metadata stored in the master dataset obtained in 
the previous step, and produced a list of candidate studies. Such an information was validated by 
contrasting the search results with a set of previously selected studies, manually identified by the advisors 
of the author during a previous stage. This validation process shown that every pre-selected study was 
found and selected by the software robot, indicating the automatic selection was accurate.  

2.3.  Study selection  
In this stage participated the author and also two researchers of the area (advisors of the author). The 
relevance of each study selected by the robot (i.e., that matches with QS1 and QS2) was rated by two 
participants, and in case of conflicts with these rates, the third participant decides on the paper relevance. 
The author rated all studies and the advisors played the other roles. 
 
The relevance of a study was defined using inclusion and exclusion criteria. The inclusion criteria 
considered: (1) studies that group, classify or enumerate SDEE methods based on one or more criterion, 
(2) studies indicating properties or quality features that can be used to classify these methods, and (3) 
previous SLR in the same study domain. The exclusion criteria considered: (1) studies that describe a 
particular SDEE method, (2) studies that involve various SDEE methods, but do not classify or group 
them, (3) studies that estimate project variables (e.g., product size or team time), but do not the 
development effort, and (4) studies already stored in the master dataset (i.e., duplicated articles). 
 
Every paper counted on two reviewers, where each reviewer indicated the paper relevance using the 
inclusion and exclusion criteria after reading its title, abstract and keywords. In some very few cases it 
was required to quickly review a study to determine its relevance for this SLR. The relevance of each 
paper was indicated using three values: relevant, irrelevant, uncertain. Relevant means the study satisfies 
at least one of the inclusion criteria and none of the exclusion ones. Irrelevant means the study satisfies 
at least an exclusion criterion. A study’s relevance is uncertain in any other case. 

2.4. Quality assessment 
In order to improve the selection done in the previous stage, we created a validation list based on the 
questions indicated in Table 3. Each question (for each study) was answered as “yes”, “partially” and 
“no”, which correspond to 1, 0.5 and 0 respectively, according to the recommendation of Wen et al. 
[WEN12]. The final score of each study (i.e., its quality indicator) was obtained by adding the scores 
assigned individually to each quality assessment question for such a paper. Similar to the previous stage, 
the quality assessment of each study was performed by two people, and in case of conflict the third 
person decided.  
 
After conducting the quality assessment, we selected studies considered “relevant” and with a quality 
indicator over the 50% of the perfect score. This decision adheres to the recommendation given in 
[WEN12].  
 
  



 
 

Table 3. Quality assessment checklist (based on  [WEN12]). 

ID Quality Assessment Questions 

QA1 Is the study published in a conference or journal relevant in the study domain? 

QA2 Has the article clearly defined its goals and contributions? 

QA3 Are the paper contributions supported by evidence? 

QA4 Is the work useful for the industry? 

2.5. Data extraction 
Once obtained the final list of studies to be used for answering the RQs, we filled a data extraction form 
(recommended in [KIT07]) that includes for each study: study identifier, publication year, author name(s), 
source, URL, article title, and number of citations. The form helps organize and index the information. In 
our case, such an information was retrieved by the software robot and reviewed by the author. All 
information required to fill the forms was available in the already collected metadata, except the number 
of citations that was obtained from Google Scholar. Moreover, a set of key aspects were defined for each 
research question to help the reviewer identify the parts of the paper that are relevant for the SLR (i.e., for 
answering the questions). These terms are shown in Table 4.  
 

Table 4. Relevant terms for the RQs. 

RQ1 - What are the main taxonomies of SDEE methods reported in the literature?  

● Classifications or taxonomies reported in the study  

● Coverage of the taxonomy according to the authors 

● List of SDEE methods being classified 

RQ2 - What are the most relevant classification criteria used in these taxonomies? 

● Variables, dimensions or classification criteria reported in the study 

● Values reported for each variable/dimension/classification criterion 

● Strategy to classify methods using the reported variables/dimensions/classification criteria 

2.6. Data synthesis 
After performing the information retrieval, such information was grouped and organized to help answer 
the RQs and determine the generalization of the results. In order to do that, two synthesis approaches 
were used: narrative and quantitative synthesis. The first one was used to answer RQ1 since it allows 
summarizing the results, and also visualizing and explaining the taxonomies. For answering RQ2, a 
quantitative synthesis was used as it allows to visually represent the dimensions that are most frequently 
used to classify SDEE methods. 



 
 

3.  Obtained Results  
Figure 3 illustrates the SLR process and the number of studies retrieved in each stage (the step labels 
are indicated with circles). The automated search using the first query string (QS1) in the four sources of 
literature retrieved 1,442,159 documents (including duplicate papers). After removing the duplicated 
articles and then applying the QS2, we obtained 1,303 papers that were analyzed considering the 
inclusion and exclusion criteria. These criteria were applied after reading the title, abstract and keywords 
of each article, and only in few cases the paper was fully reviewed. As a result of this step, a set of 35 
studies was identified, which was reduced to 17 papers after applying the evaluation criteria presented in 
Table 3.  
 

 
Figure 3. Data extraction strategy (from [KIT07]). 

 
Considering the total of 17 selected articles, 11 of them were published in journals, 3 in conferences, 2 as 
book chapter and 1 in a symposium. Table 5 shows the sources of the pre-selected articles.  
 

Table 5. Sources of the selected studies 

Publication source  Type  # of 
studies  

The Journal of Systems and Software  journal 3 

Information and Software Technology journal 2 

Journal of Computer Science and Technology journal 1 

Indian Journal of Science and Technology journal 1 

Annals of Software Engineering journal 1 



 
 

IEEE Transactions on Software Engineering journal 3 

International Conference on Global Software 
Engineering 

conference 1 

International Conference on Software 
Engineering (Companion Volume) 

conference 1 

International Conference on Predictive Models in 
Software Engineering 

conference 1 

 International Symposium on Empirical Software 
Engineering 

symposium 1 

Encyclopedia of Software Engineering book chapter 1 

Advances in Computers book chapter 1 

 
 
Figure 4 shows the distribution of papers according to the publication year. The number of publications 
remains stable and quite low.  
 

 
Figure 4. Distribution of selected studies by year. 

3.2. SDEE method classifications and taxonomies (RQ1) 
Typically the classifications and taxonomies are used to organize knowledge in particular domains, and 
they can be broad (large coverage) or specific (small coverage). Considering the papers selected for this 
study, 10 of them (59%) are broad and the other 7 (41%) are focused on describing in detail some of the 
previous categories. Next we first describe the general taxonomies (Section 3.2.1) and then the specific 
ones (Section 3.2.2).    



 
 

3.2.1. General Classifications  

The publishing date of the articles reporting general classification ranges from 2000 to 2017. Seven of 
them (78%) present a flat classification with only one level and the other three articles include several 
levels and subclassifications. These classifications group the SDEE techniques from four points of view: 
technique-based, model-based, based on the volume of supporting data, and hybrids. Next we briefly 
explain each of them. 

Classifications based on Techniques   
According to Bohem et al. [BOE99], software economics involves two main areas: (1) software cost and 
schedule estimation, and (2) software decision support. The first one is relevant for this study, and it 
considers six categories (Fig. 5): expertise-based, model-based, regression-based, composite-Bayesian, 
learning-oriented, and dynamics-based.  
 

 
Figure 5. Classification proposed by Bohem et al. [BOE99]. 

 
In the category expertise-based (or expert judgment) techniques the main protagonists are the experts; 
i.e., the people that know about the business and the technical domain, and are in charge of generating 
the cost and time estimations using their expertise and doing analogies with their previous projects. The 
model-based techniques (or parametric models [BOE00]) are supported by a model that typically involves 
a set of variables, parameters and relationships among them. These models need to be set according the 
company and project features (this also includes the characteristics of the development team) in order to 
obtain accurate estimations. The regression-based estimation methods use linear regressions (or similar) 
to make an estimate, and they require to count on an important volume of historical information, that 
should also be relevant for the project being estimated. Moreover, they also require to count on 
configurations that indicate the correlation between variables of the previous and the current project. The 
composite-Bayesian (also known as hybrid or composite [BOE00]) techniques allows using expertise-
based techniques complemented with model-based ones. Thus, the experts can adjust or justify their 
estimations supported by the extra information provided by particular estimation models. The learning-
oriented methods are those that include adaptive learning in order to improve their estimations based on 
the results of previous projects. These techniques represent an alternative to regression-based 
estimations. The dynamics-based methods are used to adjust the estimations for a project development 
while the project is being run and according to the history of such a project; i.e., these methods are 
focused on producing re-estimations.    
 
Moløkken et al. [MOL03] use a different perspective and propose a taxonomy of SDEE methods with 
three categories (Fig. 6): expert-based, model-based and other. Similar to the previous taxonomy, expert-
based include techniques where a person estimates using intuition and making analogy with previous 
projects. The model-based estimation techniques group pure models like SEER [JEN83] and CoCoMO 
[BOE81], and the “other” category groups the non-pure models like those based in price-to-win [BER92]. 
  



 
 

 
Figure 6. Classification proposed by Moløkken et al. [MOL03]. 

 
Jørgensen et al. [JOR07] performed a systematic literature review on software development cost 
estimations and proposed twelve categories of techniques (Fig. 7). Various of them were identified in 
previous proposals and already introduced in this document, and the rest of the approaches are briefly 
explained next.  
  

 
Figure 7. Classification proposed by Jørgensen et al. [JOR07]. 

 
The neural network-based methods consider the use of these tools and also artificial intelligence to try 
guessing projects estimations. The methods based on theory are constructs derived from theoretical 
knowledge about the project estimations, like SLIM [LAW91]. The work breakdown techniques take 
advantage of the decomposition of development activities, reducing thus the size of the activities to 
estimate and generating more accurate estimations. The function point methods include variants to the 
Albretch proposal [ALB79]; e.g., feature points and use case points. These methods use a unit of 
measurement (function points or similar) to express the effort required to develop a software. The CART 
(Classification and Regression Trees) methods use classification and regression trees to generate the 
estimations, and the simulation techniques include the use of simulation models, like Monte Carlo. 
 
In 2014 Britto et al. [BRI14] performed a systematic literature review on SDEE methods focused on global 
development, and classified the estimation techniques in three categories (Fig. 8): expert-based, 
algorithmic-based (or model-based), and artificial intelligence approaches. This taxonomy is general and 
quite similar to the one proposed by Moløkken et al. [MOL03].  
 

 
Figure 8. Classification proposed by Brito et al. [BRI14]. 

 



 
 

Rajper et al. [RAJ16] (Fig. 9) uses the classification proposed in [BOE00] as a basis to report the results 
of a systematic literature review on SDEE methods. Although these categories are mainly the same than 
those discussed in the previous works, this proposal introduces a category named “data mining” 
techniques that use such an approach on a large amount of historical information to generate the 
estimations. Dejaeger et al. [DEJ12] review several data mining techniques for conducting SDEE. The 
work of Rajper et al. [RAJ16] also establishes subcategories for the composite techniques by grouping 
them in three subcategories: machine learning-based, parametric models and Bayesian techniques.      
 

 
Figure 9. Classification proposed by Rajper et al. [RAJ16].  

 
The last general taxonomy of SDEE was reported by Boehm [BOE17], and it considers six categories of 
methods (Fig. 10): expert-judgement, analogy, parametric models, resource-limited,  reuse-driven, and 
product line. The last three categories were identified in previous works but never included formally in a 
taxonomy. Next we briefly explain each of them. The resource-limited techniques consider that cost or 
time in a project are predefined (that is the limited resource), and therefore the technique is used to 
estimate the non-predefined variable. In this case, project cost and time are considered as independent 
variables [BOE00-2]. The reuse-driven methods allows the reuse of the historical information in project 
with similar size and characteristics than the new one [BOE00-2, POU96]. This strategy considers tuning 
of the estimation, considering the effort by phase required in the new project. The product line techniques 
consider the effort required to develop other products of the product line, as input to estimate the new 
ones [BOE00-2, POU96]. 
 

 
Figure 10. New classification proposed by Bohem [BOE17]  

Classifications based on amount of available data 

One of the first questions to answer when selecting a technique to estimate a project is how much 
historical information we have to support such an activity. The answer establishes the set of alternatives 
that are more suitable to conduct the estimation. Considering this aspect, Myrtveit et al. [MYR05] propose 
a taxonomy that reclassifies the existing SDEE categories indicating if they require sparse or many data. 



 
 

As shown in Figure 11, most categories of estimation techniques require an important amount of historical 
information.  
 

 
Figure 11. Classification based on the volume of available data (based on [MYR05]). 

 
Kläs et al. [KLA08] propose other alternative to such taxonomy and classify the SDEE methods in three 
categories, considering not only the amount of required data, but also the way in which such information 
is used. Particularly, the proposed categories are (Fig. 12): data-driven, expert-based and hybrid. The first 
ones require an important amount of data, which can be used to conduct analogies, or feed or tune a 
model (including composite models). Models in this category require to count on formal records of the 
historical information. The second category use few or informally recorded information, and it is the expert 
who analyzes, prioritizes and interprets it in order to produce an estimation. The last category mixes the 
two previous ones.  
 

 
Figure 12. Classification proposed by Kläs et al. [KLA08]. 

Classifications based on models 

Similar to the previous proposal, but using a different reclassification criterion, Briand et al. [BRI02] 
establish a taxonomy considering if the SDEE techniques corresponds to model-based methods (Fig. 13). 



 
 

This article proposes to classify them in generic and specific model-based, which is a categorization that 
was not reported in previous works. The generic model-based techniques are potentially suitable to be 
used in any work context (project or product), and they can be proprietary or non-proprietary. While in the 
first case the estimation model and the way of using it are not publicly available, in other case the 
methods are non-proprietary.  

 

 
Figure 13. Classification proposed by Briand et al. [BRI02] 

 
Concerning the specific model-based techniques, they use models that are valid on particular project 
contexts. Data driven and composite methods are example of specific model-based techniques. 
Concerning the non-model based methods, they involve the use of one or more techniques that do not 
involve models (e.g., expert judgement), and require to count on a procedure that indicates how to use 
the technique. This is particularly required when more than one technique is going to be combined. 

3.2.2. Specific classifications  

As mentioned before, seven of the selected articles address specific classifications (or categories) and 
propose sub-classifications for them. The specific categories to be analyzed are the following: expert 
judgement, semi-parametric approaches, machine learning, focused on data mining, analogy-based, 
ensemble and agile techniques. Next we briefly explain each of them. 

Classification of semi-parametric models 
Nikolaos et al. [NIK15] address the challenge of classifying semi-parametric SDEE methods (Fig. 14). 
They use as a basis the taxonomy of Myrtveit et al. [MYR05] (shown in Fig. 11) that identifies two initial 
classes of techniques: sparse data or many data. The first category includes methods based on expert-
judgment or similar, and they were not reviewed in Nikolaos et al. study. The second category considers 
three dimensions of techniques: parametric, non-parametric and semi-parametric. This last category is 
the focus of their study, where the authors intend to determine how to combine parametric and non-
parametric models in a suitable way. In order to do that they extend the model proposed in [NIK10] by 
combining linear and non-linear components in two steps. In the first step they suggest to use the 
following non-parametric methods: analogy-based, locally weighted regression, neural networks and 
support vector machine. Although the same model is also applied in the second step, it is recommended 



 
 

that the parametric component is estimated using some of the following regressions: least median of 
squares, robust m-estimator, least trimmed and ridge.  
 

 
 

Figure 14. Classification of semi-parametric models (based on [NIK15]). 

SDEE methods based on expert judgement 
Jørgensen [JOR04] reviews several studies on SDEE methods based on expert judgement and defines 
twelve ‘‘best practice’’ guidelines (or principles) to conduct this type of estimation: (1) evaluate estimation 
accuracy, but avoid high evaluation pressure; (2) avoid conflicting estimation goals; (3) ask the estimators 
to justify and criticize their estimates; (4) avoid irrelevant and unreliable estimation information; (5) use 
documented data from previous development tasks; (6) find estimation experts with relevant domain 
background and good estimation records; (7) estimate top-down and bottom-up, independently of each 
other; (8) use estimation checklists; (9) combine estimates from different experts and estimation 
strategies; (10) assess the uncertainty of the estimate; (11) provide feedback on estimation accuracy and 
development task relations; and (12) provide estimation training opportunities.  
 
The use of all or part of these principles lead us to structured estimation methods, where the expert can 
use historical data and also supporting instruments like validation lists or feedback tables. This category 
includes most of the methods based on expert judgement that are reported in the literature (e.g., 
Wideband Delphi or Poker Planning). Contrarily, the lack of principles or processes for conducting the 
estimations correspond to techniques classified as unaided intuition (‘‘gut feeling’’). In this case, the 
expert counts on mainly his intuition and memory to conduct such an activity. Figure 15 summarizes this 
taxonomy.  
 

 
 

Figure 15. Classification of SDEE methods based on expert judgement (based on [JOR04]).  



 
 

Classification of combined techniques (ensemble)  

Ali Idri et al. [ALI16] show that it is possible to create ensemble estimation methods, when the composed 
techniques presents certain characteristics. In order to propose an ensemble method, it is required not 
only to identify the techniques that are going to be used as base for the new method, but also the 
components from those techniques to be combined and the set of combination rules to be used in the 
fusion. After that, we are in condition to specify the ensemble technique.  
 
The ensemble methods can be classified in two categories (Fig. 16) [ALI16]: homogeneous and 
heterogeneous techniques. The homogeneous ensemble methods can belong to two categories: the 
single base model and the ensemble learning with base model. The techniques in the first category use a 
single method as the base, and at least two configurations. The techniques in the second category 
include the combination of a base model and a predictor learning model like Bagging [BRE96], negative 
correlation [YAO99] o random [HAL09]. If we use as base model a combination of two different methods, 
then we obtain an heterogeneous ensemble method.  
 

 
 

Figure 16. Classification techniques that combine SDEE methods (based on [ALI16]). 

Classification of estimation techniques based on machine learning 

The “learning-oriented” category was proposed by Boehm and Sullivan [BOE99] and then used in several 
taxonomies. Particularly, Wen et al. [WEN12] use this category to separate the SDEE methods that use 
machine learning (ML), in pure form or in hybrid form (Fig. 17). The techniques that involve ML can be 
pure or hybrid, where the former involves the use of a single ML technique, and the latter combines two 
or more ML methods. Moreover, Wen [WEN12] identify eight pure ML techniques that are shown in 
Figure 17.  
 



 
 

 
 

Figure 17. Classification of estimations based on machine learning (based on [WEN12]).  

Classifications based on analogies  
Figure 18 shows other classification proposed by Ali Idri et al. [IDR15] for SDEE techniques based on 
analogies, and it is particularly interesting as it is the first proposal detailing such a category. According to 
their work, it is possible to identify two main groups: analogy-based techniques that are used alone, and 
those that are combined with ML-based or non-ML-based models. This combination of models should 
adhere to a set of fusion rules as recommended in [WEN12].  
 

 
 

Figure 18.  Classification of techniques based on analogies (based on [IDR15]). 



 
 

SDEE methods focused on data mining 

There seems to be no consensus about when a massive data processing technique should be classified 
as a data mining technique. Dejaeger et al. [DEJ12] shows thirteen techniques that can be included under 
the data mining umbrella (Fig 19); many of them were also reported by Wen et al. [WEN12]. 
 

 
 

Figure 19. SDEE methods based on data mining (based on [DEJ12]). 
 
According to these authors, the generic SDEE techniques require to use data mining to improve their 
accuracy; however, counting on such volume of information represents a challenge for most software 
companies. The work of Dejaeger et al. also indicates the amount of data that is required to get a suitable 
estimation, and the accuracy that we can expect from every technique. This helps the reader chose the 
most suitable data mining technique according to the reality of each software company. 

SDEE methods for agile development 
During the last years there have been many proposals to support estimations in agile software 
development (ASD); however, few classifications have been reported in the literature. The most 
interesting one is probably the taxonomy proposed by Usman et al. [USM14] that considers five main 
categories and specific methods in some of them (Fig. 20). They classification that they propose is the 
result of a systematic literature review.  
 

 
   

Figure 20. SDEE methods for agile development (based on [USM 14]). 
 
Most of these categories have been already explained in previous taxonomies, but in the context of ASD, 
some of them have a different flavor. For instance, expert judgement tend to be more collaborative in 
ASD than in other development scenarios.  
 



 
 

An important aspect of the work reported by Usman et al. is the frequency of usage of these techniques. 
Particularly, expert judgment, planning poker, use case points and variants of this latter are the most 
frequently used techniques. Other methods like techniques based on regression, neural networks and the 
constructive agile estimation algorithm are less frequently used. It is important to remark that in this case 
we are considering only techniques suitable for ASD environments, and therefore, most of the previous 
ones are not suitable or still not used in this development domain. 

3.3. Classification criteria used in the reported taxonomies  
The seventeen articles considered in this study used several criteria to classify the SDEE techniques. 
Fourteen of them consider expert-judgment and the use of parametric/non-parametric models, eleven use 
artificial intelligence as a classification criterion, nine use combinations (ensemble), eight papers classify 
the techniques depending on whether they use or not a model (or algorithm) to estimate, five consider the 
use of regressions or analogies as classification criteria, and four consider the use of intellectual property 
over the estimation techniques. Next we explain each classification criterion, and then present a list of the 
119 SDEE techniques (gathered from this study) classified using these criteria.  

3.3.1. Details of classification criteria  

Sixteen specific criteria were obtained from the selected studies: expert estimation, data driven, 
parametric, model-based, regression-based, composite, artificial intelligence, analogy-based, proprietary, 
ensemble, functionality-based, machine learning, dynamics-based, resource-limited, reuse-driven, and 
product line. The nine most representative ones (i.e. are included in at least two taxonomies) are enough 
to create a general classification that allows to catalog properly the collected SDEE techniques (119 in 
total). Next we explain each criterion.  
 

● License. This criterion is used to classify techniques considering whether its implementation 
details are public, accessible under license or inaccessible. Typically, depending on it, the 
techniques are classified as proprietary or non-proprietary.  

 
● Data. This criterion indicates how much data is required to use the techniques. Using this 

criterion, the SDEE methods are classified as requiring many data, sparse data or no data. 
 

● Parametric. Some techniques require to calibrate or configure some parameters before being 
used for generating an estimation. This criterion determines whether a particular SDEE method 
requires this process, and consequently, it can be labeled as parametric, semi-parametric or non-
parametric.  

 
● Expert. This criterion indicates that a technique is based on the experience or judgment of a 

person (the estimator). Depending on it, the technique is classified as expert-based (an expert is 
required) or No need Expert (no expert is required).   

 
● Model. It determines if a SDEE technique is based or not in a model: model-based and non-

model based respectively.  
 

● Analogy. This criterion determines the feasibility of reusing (partially or completely) previous 
estimations to generate new ones, by making an analogy between the new project and the past 
experiences. Depending on it, the SDEE methods can be classified as analogy-based or other 
(non-analogy-based).  

 



 
 

● Regression. This criterion considers a method as regression-based when it uses some type of 
regression on historical data to generate an estimation. In other case, it is considered as non-
regression-based.  

 
● Composite (or ensemble). It indicates whether the technique is pure or the result of fusioning two 

or more existing techniques (or part of them). In the latter case the techniques are known as 
composite or ensemble.  

 
● Artificial intelligence. A SDEE technique is considered as based on artificial intelligence when it 

uses methods or algorithms from such a knowledge domain for generating the estimations. In 
other case, it is considered as non-based on artificial intelligence.  

3.3.2. Classification of SDEE techniques   

Considering the previous classification criteria and the 119 SDEE techniques identified in the studied 
papers, we classified each technique using these criteria. We added the value 'unknown' to each criterion 
to indicate that for a given method, we could not determine how to classify it according to such a criterion. 
Table 6 shows the summary of this classification; the details are available in the annex. The summary 
indicate the number of techniques reported by category.  
 

Table 6. Classification of techniques based on suggested criteria. 

   
 
These numbers indicate that most of the reported techniques are non-property, do not need an expert 
and consequently they require many data. Moreover, most techniques are based on models and do not 
use analogies, regressions or artificial intelligence mechanisms. It is important to remark that this 
summary only indicates that most research has been (or is being) done on methods that adhere to such 
characteristics, that usually correspond to those used to estimate large projects. Moreover, these 
methods are less people-dependent and also less accurate in considering the relevant historical data. 
This seems to indicate that the research efforts are more focused on using many data and much 
computing processing in order to reduce the dependence on subjective components like the estimators 
(experts) and highly contextualized historical information. This is quite surprising considering the literature 
reports that expert judgement is the most frequently used SDEE approach [JOR14, MOS00, TRE08, 
USM14], and Table 6 shows no much research work on it. 
 
Particularly, small and medium-sized companies, that represents most of the software development 
capacity at global level [ARA10, LAP08, WAN06], have less chance to use techniques based on many 
data simply because they do not have much historical data to use. They typically use sparse or no data, 
expert-based (i.e., no model-based) and analogy-based methods to produce their estimations (in blue in 
Table 6) [MOS00, TRE08, JOR14]. Therefore this study shows an opportunity to do research and 
improve software estimation support in such an application domain. 



 
 

4. Discussion  
In this section we revisit the stated RQs and provide an answer to them based on the results of this study. 
Moreover, we discuss the usefulness of these taxonomies for small software companies (less than 50 
people). Studying this group of companies is relevant as they represent about 70% of companies in Brazil 
[WAN06], 95% in the USA [ARA10], and over 80% in Canada [LAP08] and Chile [VAR03, OTE05]. 

4.1. Revisiting RQ1 
After analyzing the 17 articles selected in the systematic literature review, we can provide an answer to 
the research questions stated in Section 1. Concerning the RQ1 (What are the main taxonomies of SDEE 
methods reported in the literature?) it was not possible to determine one or more “main” taxonomies since 
the classification criteria they use and the way they represent the categories of SDEE technique is too 
diverse. However, this study shows some aspects of these taxonomies that are worth remarking. 
 

● The taxonomy structure. All taxonomies use a hierarchical structure that leads to overlap SDEE 
techniques or overgeneralization. Moreover, in many cases the authors include a category “other” 
(like in [REI17], [IDR15], [MOL03]) that is ambiguous and limits the ability to enumerate the 
techniques under such a category. Other limitation of using hierarchical taxonomies is that some 
techniques are ensemble or hybrid, and therefore it is almost impossible to classify them properly 
in this kind of structure.  

 
● Poorly contextualized classifications. Most classifications are stated as independent of the 

application domain of the estimation techniques, except those that were defined to be used in 
specific domains. Contextual aspects like the project or company size, type of development 
approach or business limitations are not considered by these techniques. Considering these 
aspects would help organizations select appropriate SDEE techniques to their contexts and also 
transfer the expertise usually required to conduct the estimations [EAR01].  

 
● Classification coverage. Most taxonomies were defined using too general categories in order to 

have large coverage (e.g., [BOE99], [MOL03], [JOR07], [BRI14], [RAJ16], [BOE17], [MYR05]). 
This allows one to classify almost any technique, but it is not much useful to help organizations 
identify appropriate SDEE methods to use in a particular context or project. This lack of precision 
to classify the techniques can be addressed using a feature model in which each method can be 
classified using multiple criteria, as shown in the table presented in the annex and that we 
summarized in Table 6. 

 
Summarizing, there is not a taxonomy widely accepted to classify the SDEE techniques (RQ1), and the 
reasons seem to be two. The first reason is that there are too many relevant and almost independent 
classification criteria. This means that each technique has a value in each dimension considered in the 
classification. Considering this fact, it becomes evident that hierarchical representations are not suitable 
to specify these taxonomies, which is the second reason. 
 
Trying to address the motivation to find an answer to RQ1, this article shows and prioritizes the criteria 
reported in the literature for classifying the SDEE techniques. Moreover, it also shows the result of using 
a feature model to classify these techniques (see annex), which seems to be more appropriate that the 
hierarchical representation, at least for choosing a SDEE method considering the characteristics of any 
given company or project. 



 
 

4.2. Revisiting RQ2 
Concerning the RQ2 (What are the most relevant classification criteria of used in these taxonomies?), the 
study results indicate that most articles consider the participation of an expert and also the use 
parametric/non-parametric models, as the main classification criteria. Their relevance is given not only 
because of their citation frequency (82% of the revised articles considered these classification criteria), 
but also their position in the hierarchical structure that represents each taxonomy.  
 
It is important to remark that these criteria are relevant for the scientific community, but we do not know 
their relevance to the software industry. In this sense, a field study is required to answer this question, 
which should consider several clusters of organizations, e.g., according to company size, maturity level, 
development approach, and also culture. Several works indicate that expert-based SDEE techniques are 
the most currently used in the software industry [MOS00, TRE08, JOR14]. However, the literature reports 
broad or no subclassification for such a category. This represents an opportunity to advance the state of 
the art, by helping organize the existing knowledge in such a study domain and also identifying the needs 
that are still not studied by the software engineering community. 

4.3. Supporting the selection of SDEE methods for small software companies 
In order to determine SDEE methods that are potentially suitable for being used in a certain software 
organization, it is important to understand the requirements for using each method, and also determine if 
they can be addressed by the target organization. Recognizing that there is a large variety of small 
software companies, we characterize these organizations assuming that they have few or no historical 
information to support their estimations [TRE08], and they use expert-based estimation techniques 
[MOS00, TRE08, JOR14, USM14]; i.e., they do not use a model and the estimation procedures are public 
at least for the company personnel. Then, considering these characteristics to filter the requirements of 
the SDEE techniques shown in the annex, it is possible to obtain the set of estimation methods that 
matches with these characteristics (Table 7).  
  

Table 7. SDEE techniques potentially suitable for small software organizations. 

 
 
Additional filters can then be added to make the search more specific and appropriate for the target 
organization. In this sense, the table shown in the annex represents an alternative to the reported 
taxonomies, at least for companies that intend to pre-select a set of SDEE techniques potentially suitable 
according to the characteristics of the company. 



 
 

5. Study limitations 
Although this study has followed all steps recommended by Kitchenham and Charters [KIT07] to perform 
systematic literature reviews in the software engineering domain, we have identified some threats to the 
validity that are discussed next.  
 
Construction validity. In a systematic literature review (SLR) the threats to the construction validity are 
typically related to the definition of the search strings, which allow identifying the primary studies that are 
required to answer the stated RQs. This is also conditioned by the source of literature (digital libraries) 
used as input, the primary studies selection process and the quality criteria used to include or exclude 
each pre-selected article. Although the process of gathering and selection of studies was followed 
accurately, there were some few studies that were identified only through a manually search, since the 
keywords used in the search strings were not included in the title or in the abstract of these articles. In 
order to mitigate this threat, we manually reviewed the references in the (automatically and manually) 
selected articles to determine other relevant articles which were not retrieved in the previous process. 
Such a process does not added new studies to the sample. 
 
Internal validity. This threat is related to the retrieval and analysis of the primary studies. Although all 
steps of the process were completed successfully, they were conducted on a sample of studies that could 
have some bias not identified in this work.  
 
External validity. This threat is related to the generalization of the findings. In this sense, we recognize 
some biases in the studies that were produced by the motivation of the authors for showing particular 
aspects of their studies. In order to mitigate this threat we reported only information supported by more 
than one study of the analyzed sample; contradictory information was not reported. 

6. Conclusions and future work 
This article presents a systematic literature review that aims to determine what are the main taxonomies 
of SDEE methods reported in the literature? (RQ1), and also what are the most relevant classification 
criteria used in these taxonomies? (RQ2). The first question intends to identify the taxonomies available 
to help software practitioners in the selection of SDEE techniques based on the clusters proposed by the 
main taxonomies. The second question intends to determine the most transversal clusters of techniques, 
according to the reported studies. 
 
The SLR adhered to the process proposed by Kitchenham and Charters [KIT07], and it involved four 
digital libraries relevant for the study domain (IEEE, ACM, Science Direct and Springer). The selection 
process of primary studies concluded with 17 articles that were read in detail in order to answer the stated 
RQs.  
 
Concerning the RQ1 this work determined that there is not a widely accepted taxonomy, since there are 
too many relevant and almost independent criteria to classify the SDEE techniques. Moreover, the 
hierarchical structure used to represent the taxonomies is not much useful to help identify clusters of 
techniques potentially useful for a software organization. This is probably true also to organize the 
knowledge in this study domain. Trying to help practitioners to identify suitable techniques for their 
organizations or projects, this article presents a matrix, produced as a result of classifying the 119 SDEE 
techniques reported in the study sample, and illustrates with an example how to use it. This matrix is an 
alternative to the proposed taxonomies, at least for software practitioners. 
 



 
 

Concerning the RQ2, the study results indicate that 82% of the revised articles considered the 
participation of an expert, and also the use parametric/non-parametric models, as relevant classification 
criteria for the scientific community. However, it is not clear their relevance for the software industry. In 
this sense, and as part of the future work, it is required to conduct a field study to determine the relevance 
of the 16 classification criteria identified in this study. 
 
This work also identified a surprising situation related to the study of expert-based SDEE techniques. 
Although the literature reports that this type of technique is the most currently used in the software 
industry [MOS00, TRE08, JOR14], only 20 out of 119 estimation techniques consider the participation of 
an expert. It is important to try understand the reasons behind this situation in order to align the future 
research efforts and the industry needs. In this sense, this represents an opportunity for the software 
engineering community to advance the state of the art in this study area. 
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Annex 
Table 8 presents the details of the SDEE techniques classified according to the criteria defined in Section 
3.3.1. This table is the result of a classification of the techniques performed using a feature model, which 
allows us to determine the features of an estimation method, considering simultaneously several 
classification criteria. These features were obtained based on the characteristics of the methods reported 
in the papers used in this study, using the original report of each method only when necessary. 
 

Table 8. SDEE techniques SDEE techniques classified according to the criteria defined. 
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