
Software Process Line Modeling and Evolution
Jocelyn Simmonds, Daniel Perovich, Cecilia Bastarrica and Luis Silvestre

Computer Science Department
University of Chile

{jsimmond, dperovic, cecilia, lsilvest}@dcc.uchile.cl

Abstract—Companies formalize their software processes as a
way of organizing their development projects. These companies
usually work with families of processes, since differences in
project requirements and objectives means that a “one-size-fits-
all” approach does not work well in practice. This family can be
a collection of predefined processes, but can also be a Software
Process Line (SPrL), where a general process is automatically
tailored to a project’s context. The latter approach generates the
process that best suits the project’s requirements, but requires
formalization and tool support to be successful. Model-Driven
Engineering provides a formal framework for defining the models
and transformations required for automated process tailoring.
In this approach, various types of models must be specified and
evolved, limiting industrial adoption. To address this problem,
we propose a megamodel for SPrL definition and evolution, that
provides the required formality while hiding the complexity of the
approach. A megamodel is a model in itself formed by references
to models. By defining a megamodel, we can provide uniform
support for process definition including variability, tailoring and
evolution, which we formalize in this article. We report the
application of our approach to the software development process
of Mobius, a Small Software Enterprise based in Chile.

I. INTRODUCTION

Small Software Enterprises (SSE) define their processes in
order to manage their development projects in a systematic
way, being able to plan, assign resources and control the
progress of the project. Having a defined process allows
companies to analyze projects’ results in terms of quality
and productivity as a basis for improvement. Moreover, if
the process is rigorously defined, the company can get an
ISO certification or a CMMI evaluation that may give them a
commercial advantage. Formally defining the software process
allows for using supporting tools for formal process analysis
and management, as well as making evolution easier. Software
processes can evolve in different ways such as adding or
removing activities, changing a work product template, or
assigning a new role to a particular task, among others.

Defining, documenting and following a software process
is an expensive endeavor. However, software companies get
involved in different kinds of projects: a large software de-
velopment from scratch, software development with an expe-
rienced or a novice team, bug fixing, software projects using
well known or highly innovative technologies. Therefore, the
same process is not appropriate for addressing all kinds of
projects being equally productive and effective in all cases. An
obvious conclusion is that it is necessary to count on a series
of processes each one for each kind of project, i.e., a process
family. Evolving all these processes independently implies a

big effort, as well as a risk of introducing inconsistencies
among them.

If defining a software process is expensive, defining a whole
process family is almost always unaffordable, especially for
SSEs, which is the case for most of the software companies
in Chile. A software process line (SPrL) is a software product
line where the products are software processes. In this way
a SPrL defines its reusable process assets and a mechanism
for obtaining particular processes within the SPrL scope; this
mechanism is called process tailoring. There are different
approaches to process tailoring such as counting on a set of
predefined processes, building a software process by config-
uring a series of process elements, or generating particular
processes by customizing a general predefined process that
includes its potential variability. All these approaches may be
supported by tools if the process is formalized, but each of
them has some challenges. Configuring processes is a bottom
up approach and thus compatibility among process elements is
not always easy to achieve. Generating customized processes
requires systematic tailoring rules in order to achieve repeata-
bility. We have found that model-driven engineering (MDE)
techniques are a feasible solution for dealing with consistently
generating processes by defining processes as models and
implementing tailoring rules as model transformations that
resolve variable process elements. In this way we are sure
to obtain the most appropriate process for each project just
defining the project’s characteristics -its context- and executing
the tailoring transformation.

An MDE-based tailoring approach obtains the optimal pro-
cess but it requires defining the software process model that
conforms to a particular metamodel, identifying the process
potential variability, the project context model and its corre-
sponding metamodel, as well as programming the tailoring
transformation itself. All these activities are very sophisticated
and require highly specialized professionals, limiting industrial
adoption. Moreover, it is not enough to count on a specialized
professional for defining these modeling artifacts since all
them evolve: variable process elements, context attributes
and potential values, or rules implemented in the tailoring
transformation. We propose to deal with this complexity using
a megamodel, i.e., a model whose elements represent models
and therefore capturing all automatic tailoring elements in
a uniform way that ensures integrity by construction. This
solution also helps ensuring the consistency of the resulting
elements after applying all the evolution actions we have found
that exist in industrial practice: general process, context and



Software Process Line Modeling and Evolution

tailoring rules evolution.
Megamodeling is a new theoretical proposal that has not

been widely applied in real world applications yet. In this
article we show how a megamodel can support process mod-
eling, tailoring and evolution by applying it to the process of
Mobius, a small Chilean company that develops software and
hardware integrated systems for the public transportation.

The rest of the article is structured as follows. In Sec. II
we introduce Mobius and its general process model, the
elements of its SPrL and discuss evolution in this context.
Section III describes background concepts involved in our
proposed solution such as process modeling, software pro-
cess lines, decision models and megamodeling. The proposed
megamodel is described in detail in Sec. IV, including how
process, process variability, and project context are modeled.
Section V summarizes how the megamodel is used for product
derivation, using the elements modeled in the previous section,
and Sec. VI describes how this megamodel can be used for
evolving the SPrL. Finally, Sec. VII describes related work
in this area, and Sec. VIII states conclusions and current and
expected work based on our megamodel proposal.

II. MOTIVATING EXAMPLE

Mobius is a three year old software services company
based in Santiago, Chile, that develops integrated software and
hardware solutions for Santiago’s public transportation system.
Mobius has 20 employees; 8 are directly working in software
maintenance and development. Employees perform more than
one role in the company, according to the traditional software
engineering disciplines (e.g., developer, analyst, tester, etc).
Project typically take from a couple of days for incidents to
three or four months for large development projects.

This company started formalizing its development process
two years ago, as part of the ADAPTE project1. ADAPTE
proposes an MDE-based approach for software process tai-
loring, creating a Software Process Line (SPrL) [25]. In
order to create a SPrL, Mobius specified a general process
model that represents its organizational development process
(including variation points), a context model that can be
used to characterize new projects, and a variation decision
model that documents the company’s tailoring know-how. This
last model documents how variability is resolved based on
context values. These models are used to automatically create
a tailoring transformation, which outputs an adapted process
that is tailored to the input project context.

Figure 1 shows the main phases of Mobius’ general software
development process, which is loosely based on the Rational
Unified Process (RUP). It is quite detailed in its definition,
with 104 tasks, 10 roles and 44 work products, grouped into 4
phases (see Figure 2). A significant amount of effort went into
defining the SPrL: ten 3 to 4 hour sessions were required to
define the organizational process model; and the organizational
context model and variation decision model were defined over
a period of five days. This setup cost has been amortized over

1http://www.adapte.cl

Fig. 2. Mobius’ general software development process.

several projects, as it now only takes a few seconds to run our
tool chain to produce an adapted software process for a new
project.

Moreover, the tailored software process only includes the
tasks and work products that are strictly necessary for the
project, and the process configuration step required by RUP
is now carried out in a systematic and replicable manner.
However, as there are multiple dependencies between the
different models and transformations, and managing these
artifacts as part of a Software Process Improvement (SPI)
initiative is non-trivial. Given the initial cost of formalizing all
the models and transformations, this may hinder the industrial
adoption of our approach for other companies.

What is even worse, if the SPrL definition is not adequately
maintained and evolved, it will erode, making it less useful in
time. This evolution task may be even harder than defining
the SPrL since relationships and integrity must be correctly
preserved. For example, if a new task is added to the organiza-
tional process model and it is defined as a variation point, then
the process engineer must remember to update the variation
decision model, specifying how this variation point is resolved
during tailoring taking into account the project context po-

2

http://www.adapte.cl


Software Process Line Modeling and Evolution

Fig. 1. Main phases of Mobius’ development process.

tential values. This rule must be consistent with the existing
rules, otherwise the tailoring transformation will generate in-
correct adapted software processes. Removing elements from
a model also requires careful change propagation. If a context
attribute is removed from the organizational context model,
then references to this attribute must be removed from the
variation decision model, and the tailoring transformation must
be regenerated. The variation decision model may be changed
directly, especially when the adapted software process is not as
expected. These are just some examples of possible evolution;
we will discuss in the rest of this article how these and other
evolution actions can be formalized using a megamodel.

III. BACKGROUND

In this section, we give an overview of software process
modeling, software process lines, decision models and mega-
modeling.

A. Software Process Modeling

A software process is a structured set of activities required
to develop a software system [31], with related artifacts,
human and computerized resources, organizational structures
and constraints. A software process model is an abstract
representation of a process. It presents a description of a
process from some particular perspective. A process model
provides definitions of the process to be used, instantiated,
enacted, or executed. Therefore, a process model can be
analyzed, validated, simulated or executed if it is appropriately
defined according to these goals.

SPEM 2.0 (Software and Systems Process Engineering
Metamodel) [35] is a standard proposed by the Object Man-
agement Group (OMG). It is based on the Meta Object Facility
and it is the most popular language used to specify software
processes [28]. In order to encourage process maintenance and
reuse, SPEM 2.0 makes a difference between the definition of
process building blocks and their latter use in (possibly more
than one) processes.

Process elements, like tasks, roles and work products, are
defined and stored in a Method Library. These definitions can
later be reused in multiple process definitions. In SPEM, a
process is a collection of activities, where an activity is a
“big-step” grouping of role, work product and task uses. Roles
perform activity tasks, and work products serve as input/output
artifacts for tasks. Figure 3 shows an activity diagram repre-
senting the Architecture Validation activity, which is part of
the Elaboration phase (produced using the EPF Composer
tool2) of Mobius’ process. This tool shows role and work

2http://www.eclipse.org/epf

Fig. 3. Mobius’ Architecture Validation activity.

Fig. 4. Partial view of task and work products associated to the Developer
as part of the Architecture Validation activity.

3

http://www.eclipse.org/epf


Software Process Line Modeling and Evolution

products separately. Figure 4 shows that the Developer role
is in charge of the Implement prototype architecture task,
which takes as input the Design architecture prototype work
product and outputs the Architecture prototype.

Some benefits of software process modeling are [12]: ease
of understanding and communication, process management
support and control, provision for automated orientation and
process performance, provision for automated execution sup-
port and process improvement support. A well-defined soft-
ware process model is a determinant factor for achieving qual-
ity products and productive projects [22]. However, defining
a software process model demands an enormous effort for
making explicit common practices and defining practices that
may not yet exist within the company. Standards such as the
ISO/IEC15504 and maturity models such as the Capability
Maturity Model Integration (CMMI) are commonly used as
guidelines for defining processes.

B. Software Process Lines (SPrL)

Software Process Lines (SPrL) are software product lines
(SPL) in the software development process domain [37].
Table I shows the different SPL stages [40], [16] and the cor-
responding SPrL phases. The process of instantiating a SPrL
to a particular project context is called process tailoring [4].
As a typical SPL instantiation, software tailoring is the activity
in which a software process’s variation points are resolved so
that it is adapted to the particular characteristics required for
a project.

Software process tailoring requires knowledge about the
company’s process as well as possible project contexts. This
activity must be carried out in a structured manner [11] in
order to ensure that the resulting process meets the needs
of the input project. Moreover, the resulting processes may
not be consistent if tailoring is done manually– two similar
projects may end up with different processes – meaning that
the performance data for these projects cannot be directly
compared [24].

There are several strategies for process tailoring, including
template-based tailoring [10], framework-based tailoring [8],
constructive tailoring [42] and automated tailoring [25]. We
give an overview of automated tailoring based on Model
Driven Engineering (MDE) in the rest of this subsection.
In this approach, processes and possible project contexts are
formalized as models, and tailoring is formalized as a model
transformation, specified using the Atlas Transformation Lan-
guage (ATL)3. The process engineer must also define the
variation points in the organizational process model, as well
as the relationships between context attributes and variation
points.

Figure 5 shows Mobius’ Requirements activity, which
includes two types of variation points: role, task and work
product optionality and alternatives. We have included the
variation points in the activity diagrams using annotations as
a visual aid for the process engineer. Each optional process

3http://www.eclipse.org/atl

Fig. 5. Mobius’ Requirements Activity.

element is linked to an annotation that specifies a predicate
over project context attributes, the element is included in the
adapted process if the predicate holds for the given input
context. For example, the Develop vision task is only included
if Project type is Non Corrective.

Red decision nodes with annotations denote alternatives
(regular decision nodes are blue). For example, if Request
= Report or Project type = Corrective, then the require-
ments are defined using a list (Requirements list definition,
otherwise they are defined using use case diagrams (Use
cases definition). All variation points are specified using
the SPEM 2.0 variability primitives: tasks, roles and work
products represent optional process elements by setting to true
the value of a boolean attribute isOptional, and alternatives are
specified by linking variation points to possible realizations
using the replaces SPEM 2.0 variability primitive.

There is an annotation for each variation point, from which
we extracted the organizational context model, as a set of
context attributes and their possible values. Table II lists all the
context attributes that appear in Mobius’ process model. All
these are set-up activities executed by the process engineer.
Before starting a new project, the project manager must care-
fully characterize the project in terms of the context attribute
values. This project context model, as well as the organiza-
tional process model, are input of the tailoring transformation,
generating a process tailored to the project.

C. Decision Models

A decision model is a set of rules of the form condition
⇒ conclusion, where a condition is a predicate about the
application domain, and conclusion indicates how a variation
point is resolved when the condition is true. Each solution
model of a decision model represents a product in the product
line. Several notations for representing decision models have
been proposed in the literature (cf. [54], [44], [13]) In this
work we use add-or trees [32].

4

http://www.eclipse.org/atl


Software Process Line Modeling and Evolution

TABLE I
SOFTWARE PROCESS LINES AS PRODUCT LINES.

Domain Modeling Architecture Modeling Process Line Implementation Process Line Testing
• Organizational Process (includ-
ing variability)

• Organizational Process Formal-
ization

• Method Library Definition • Organizational Process in Use
Testing

• Organizational Context Defini-
tion

• Organizational Context Model-
ing

• Organizational Process in Use

Product Requirements Product Architecture Definition Product Instantiation Product Testing
• Project Context Modeling • Process Tailoring or Process

Selection
• Process Configuration • Process Configuration Testing

Fig. 6. Mobius’ Variation Decision Model.

TABLE II
MOBIUS’ ORGANIZATIONAL CONTEXT MODEL.

Attributes Values

Project type
New development
Corrective
Non-corrective

System type Guarantee
No guarantee

Interaction with other systems Simple
Complex

Team experience Yes
No

Usability High
Low

Request Report
No report

Complexity of the functionality
High
Average
Low

Data access layer Yes
No

Business logic Yes
No

Source code Yes
No

Specifying the required tailoring transformation in ATL
is not an easy task [25], even for an experienced process
engineer. Provided that when specifying the process model
including its variability, the process engineer’s tailoring know-
how has already been included in the organizational process
model using annotations, we have formalized this information
using a decision model [48]. We then use this decision
model as input to a Higher-Order Transformation (HOT) [50]
for automatically generating the process tailoring transforma-
tion [47]. Figure 6 shows the Variation Decision Model for
Mobius, which includes 16 rules.

D. Megamodeling

Practical applications of MDE are increasingly intensive
in modeling artifacts. They involve a large number of het-
erogeneous and interrelated models which change over time.
Megamodeling is the model-based approach for coping with
the complexity of managing and evolving such large model
repositories [3]. It is centered on the notion of megamodel
introduced in [7], which conveys the idea of modeling-in-
the-large by establishing and using the global metadata and
relationships on the modeling artifacts while ignoring their

5



Software Process Line Modeling and Evolution

c2

M1

MM1 MM2

MMM

c2

c2

M2

c2

c2

Fig. 7. Modeling Notation for Models

internal details. Global Model Management (GMM) [34] is a
megamodeling approach that offers Eclipse-based tool support
for managing modeling artifacts. It has a metamodel that
characterizes the different kinds of modeling artifacts and
their interrelations. The full metamodel can be found in
Appendix A. In the rest of this section we give an overview of
its key constructs and explain the notation used in this article.

A terminal model is a representation of certain aspects of a
physical, abstract or hypothetical reality, called system. A ter-
minal model conforms to (c2) a metamodel, i.e., it is expressed
in the modeling language defined by that metamodel. In turn,
a metamodel conforms to a self-conforming metametamodel
that is available in the modeling environment. For example,
Figure 7 illustrates a terminal model M1 that conforms to
the metamodel MM1 that conforms to the self-conforming
metametamodel MMM available in the environment. Thus, in
GMM, models are organized according to the 3+1 metamodel
hierarchy [6]. Besides, a metamodel can extend one or more
metamodels to merge and refine their constructs. In the same
figure, metamodel MM2 extends the base metamodel MM1,
and then, the modeling constructs from MM1 and MM2 can
be used to build the terminal model M2.

A weaving model is a special kind of terminal model
that represents a semantic relationship between elements in
different models. As illustrated in Figure 8, a weaving model
WM has two woven terminal models M1 and M2. WM defines
links between elements in those woven terminal models. The
kinds of links and constructs available in WM are those defined
by the metamodel WMM marked with the weaving stereotype.
For this kind of metamodel we capture the woven metamodels
to constrain the kind of terminal models that can be woven.
GMM relies on the AMW toolset for weaving models, which
defines a base and generic metamodel AMWCore which is
extended to define concrete weaving metamodels. An annota-
tion model is a special kind of weaving model in which only
one model is woven. It is useful to append information to an
existing model without changing its metamodel and favoring

M2

MM1

M1

c2

MM2

WM

«weaving»
WMM

woven woven

«weaving»
AMWCore

c2 c2

woven woven

Fig. 8. Modeling Notation for Weavings

MM1

M1

c2

M2

TM

TR

MM2

c2

«transform»
TMM

c2

source targettransformation

source
target

Fig. 9. Modeling Notation for Transformations

the separation of concerns.
A transformation model is a special kind of terminal model

that implements the update or transformation of a set of source
models into a set of target models. For example, as illustrated
in Figure 9, a transformation model TM takes a source
model that conforms to the metamodel MM1 and produces
a target model that conforms to the metamodel MM2. A
transformation model conforms to a metamodel which defines
the model transformation language in which the transformation
is implemented, exemplified as TMM annotated as transform
in the same figure. A model transformation language can vary
from a general-purpose imperative language such as Java to a
purpose-specific language such as ATL. Currently, the toolset
we developed uses both languages. A transformation engine
executes transformation models. Each execution is captured by
a transformation record which registers which transformation

6



Software Process Line Modeling and Evolution

model was executed, which specific modeling artifacts were
used as sources, and which were used as targets. In Figure 9,
the transformation record TR registers that the transformation
model TM was executed using the terminal model M1 as
source and generating the terminal model M2. The source and
target models must conform to the corresponding metamodels
expected by the transformation model.

Finally, a megamodel is a special kind of terminal model
that captures the the semantic relationships among a set of
modeling artifacts. In particular, Figures 7 to 9 illustrates
fragments of a megamodel. Every megamodel conforms to
the metamodel defined in Appendix A.

In this article, we further characterize the modeling artifacts
according to their provenance or scope. For each modeling
artifact we introduce, we use a colored outline in the figures
to denote its scope:

• A red outline denotes that the modeling artifact is pub-
licly available and that was developed by a research or
industry community. For instance, in Figure 8 we colored
AMWCore with red as this artifact is available in the
Eclipse-based tool support for GMM.

• A green outline denotes that the modeling artifact was
developed by our research team and that it is independent
of the application scenario of our approaches and tools.
We reuse these modeling artifacts at every SSE we work
with.

• A blue outline denotes that the modeling artifact is
specific to the organizational context of a SSE. However,
these modeling artifacts are independent of any software
development project that the SSE enacts.

• A black outline denotes that the modeling artifact is
specific to a project of a particular SSE.

IV. SPRL MODELING

In this section we present the actual proposal of a megamo-
del for formalizing and evolving a SPrL. Particularly, poten-
tial strategies for modeling software processes in Sec. IV-A,
process model variability in Sec. IV-B, variability modeling
strategies in Sec. IV-C, and context models in Sec. IV-D. In
all cases we state and justify our choice.

A. Process Modeling Strategies

We identify three strategies for modeling software pro-
cesses: using an ad hoc modeling language, using a standard
modeling language, and using a controlled modeling language.
We have decided to follow the last one. In this section we
discuss the three strategies and justify our choice.

1) Strategy M1: Use an ad hoc software process modeling
language.: According to our experience with Chilean SSEs,
this strategy is the most commonly applied. SSEs use an ad
hoc and informal modeling language such as text documents
or wikis to capture the best practices, guidance, and frequent
workflow. By means of this strategy, SSEs at least count
on an explicit representation of the shared knowledge on
the process their teams follow, but the lack of formalism in
the modeling language renders ill-formed documentation and

UMA

Organization 
Software Process

(EPF)

c2

Fig. 10. Process Model conforms to the UMA metamodel

reduces the chances of using purpose-specific tool support for
maintenance, validation and evaluation of the process.

2) Strategy M2: Use a standard software process model-
ing language.: The advantages of using a standard process
modeling language are that it is well-defined, it is possibly
well-specified or documented (this is the case for SPEM 2.0
but not for UMA), and it is also possible to count with tool
support.

In 2002, OMG proposed the Software Process Engineering
Metamodel (SPEM) [36] specified as both, an independent
metamodel based on the UML superstructure and a UML
profile, both based on UML 1.4. SPEM 2.0 also includes
some features of UML 2. The Unified Method Architecture
(UMA) [19], a standardized method metamodel from IBM,
addresses some of the weaknesses of SPEM and therefore
it also influenced the SPEM 2.0 specification [35]. UMA is
implemented as part of the freely available Eclipse Process
Framework (EPF) [15] and the Rational Method Composer
(RMC), a commercial tool from IBM. EPF and RMC provide
the functionality for modeling concrete methods based on
UMA. These methods can be exported in various output
formats (e.g., HTML) and provide them to the development
team. In this context therefore, method metamodels are a
means for documentation [53]. Then, EPF Composer produces
models conforming to UMA4 and it does not support SPEM
2.0 yet. Most Chilean SSEs that have formalized their process
use EPF Composer. Then, the process engineer produces (by
means of the tool) a terminal model Organization Software
Process conforming to the UMA metamodel. Figure 10
shows the modeling artifacts involved.

Neither UMA nor SPEM 2.0 provides direct support for
the specification of the fine-grained behavior of the process.
According to the SPEM 2.0 specification, it does not aim
to be a generic process modeling language, nor does it even
provide its own behavior modeling concepts. SPEM 2.0 rather
defines the ability for implementers to choose the generic
behavior modeling approach that best fits their needs. It
provides specific additional structures to enhance such generic
behavior models that are characteristic for describing devel-
opment processes such as UML 2 activity and state machine
diagrams, or alternatively BPDM/BPMN. This is also the case

4http://www.eclipse.org/epf/composer architecture/

7

http://www.eclipse.org/epf/composer_architecture/


Software Process Line Modeling and Evolution

UML 2.2
Superstructure

UMA

Organization 
Software Process

(EPF)

c2

Organization 
Software Process
Workflows (EPF)

c2

Fig. 11. Two Process Models Generated by EPF Composer

for UMA. Behavior can only be specified by means of work
breakdown, and fine-grained behavior must be specified by
means of a separated purpose-specific modeling language.
In particular, EPF Composer uses UML activity diagrams to
define workflows which are preserved in a separated model.
In the current implementation of EPF Composer (version
1.5.1.6), diagrams are handled by the Eclipse UML2 plugin
version 3.0.0 that, according to its documentation, is compliant
with UML 2.2 Superstructure specification.

Then, EPF Composer can be used but it produces two
separate models, as illustrated in Fig. 11. This is relevant only
if we are interested in capturing the workflows of the software
process, for instance, to achieve executability, otherwise UMA
(or SPEM 2.0) is enough. However, from the perspective of
tool developers, designing and building tool support that relies
on a specific version of a specific modeling language has
serious drawbacks. Particularly, the evolution of the modeling
language has a direct impact of the tool implementation. From
the perspective of tool developers, different customer organi-
zations may rely on different modeling languages and hence,
it requires a family of products covering those languages.
In our experience with Chilean SSEs, while some of them
use EPF Composer, others use Enterprise Architect. In these
cases, UMA is the common modeling language but it poses
the requirement to protect the investment on our tools from
this kind of variability.

Strategy M2 is well suited for using process modeling for
the sake of formal documentation, and also for scenarios where
the process engineer requires to apply additional tools to
manipulate the defined process (validate, evaluate, optimize,
etc.). This benefit comes from the fact that the modeling
language is well-defined and that tool support is available.

3) Strategy M3: Use a controlled software process modeling
language.: Strategy M3 takes care of the variety of process
specification languages used by practitioners. Instead of using
a standard modeling language, we use a controlled modeling
language, namely eSPEM. This modeling language is inspired
on those available in UMA and SPEM 2.0, and its constructs
are a subset of the constructs of those languages, mainly
those that are relevant for our goals of tool support for the
specification, enactment and improvement of SPrLs for SSEs.
By having a controlled language, we control the evolution of

the language and thus, the evolution of this language and the
corresponding tool support can be consistently updated. The
same approach was taken by the developers of EPF Composer
and RMC, that instead of using the SPEM 1.1 specification,
they devise and build a proprietary language.

However, in our case, our goal is not to define yet another
modeling language, but rather to preserve the tool support
in use by SSEs, but augmenting it with our tool set. As a
consequence, we needed a mechanism for importing processes
modeled in a standard language into processes modeled in
our controlled language. To this end, we developed an Injec-
tor from UMA into eSPEM, and an analogous one can be
implemented to import from SPEM 2.0. Figure 12 illustrates
the modeling artifacts involved in Strategy M3 for the case
of UMA. The current implementation of our toolset follows
Strategy M3 and includes the Injector from UMA.

B. Modeling Variability in Software Processes

A single Organization Software Process model rarely satis-
fies the particular needs of every software development project
executed in the organization. As a consequence, we also need
to capture the variability in the software process and the
mechanisms to resolve variable parts, in order to systematize
the tailoring process. Using modeling techniques, we can fully
automate this tailoring process. In this section we discuss how
to model variability in order to allow such automation.

1) Units of variability: Provided that we use UMA as
the modeling language for Software Processes, any kind of
construct defined by UMA, any property of those constructs,
and any association between them, can be considered as a
unit of variability. In this case, any part of the method content
and the process work breakdown can be a unit of variability.
Moreover, in the case that the fine-grained behavior of the
process is also captured, any of those constructs can also be
used as units of variability.

In our case studies, and accordingly in the features available
in our toolset, variability is localized on tasks. In the SSEs
we worked with, they have defined two kinds of variations:
optional tasks and alternative tasks. By declaring a task as
optional the process engineer is stating that when determining
the actual process for a particular project, it must be decided
whether the task must be included or not. By declaring a task
as having alternatives, the process engineer is stating that when
determining the actual process to follow in a particular project,
instead of the task, exactly one of its alternatives must be
selected to be included in the actual process. These kinds of
variation can be captured in terms of the constructs available
in UMA. Tasks have a dual representation in UMA: the Task
metaclass represents a reusable specification of a task, and
the TaskDescriptor metaclass represents the concrete usage
of a task in the process work breakdown. Task instances are
defined in method libraries and TaskDescriptor instances are
used in process work breakdown. Also, each TaskDescriptor
can be linked to a specific Task in order to indicate that the
task descriptor proceeds according to the specification of the
linked Task. For TaskDescriptor instances with no linked

8



Software Process Line Modeling and Evolution

UML 2.2
Superstructure

UMA

Organization 
Software Process

(UMA)

c2

Organization 
Software Process
Workflows (UML)

c2

Organization 
Software Process

Injector

Injection
Record

eSPEM

c2

«transformation»
Java

c2

sourcesource targettransformation

source source
target

Fig. 12. Injector from a UMA Process Model into eSPEM

task, the TaskDescriptor instance itself must specify the task
to perform.

We are not using the complete expressive power of UMA
regarding variability. In our experience with SSEs in Chile,
their processes are captured by means of optionality and
alternatives, and they tend to avoid any extra complexity in
their process specification. As a consequence, we just use the
subset of constructs of UMA that allows us to characterize
both optionality and alternatives.

Optionality can only be defined in TaskDescriptor. The
BreakdownElement (super metaclass of TaskDescriptor) de-
fines an IsOptional property to declare that the breakdown
element may or may not be used when enacting the pro-
cess. Optionality cannot be stated in a Task since it is a
reusable declaration. Alternatives, however, cannot be stated in
TaskDescriptor instances. It must be defined in the Task and
it must be done by means of the variability constructs available
in UMA. In particular, we use the replaces variability type
to state that a task replaces another.

In Fig. 13 we use a UML 2.4 object diagram to present an
organization software process in UMA. The process contains
four tasks in the method library – t1, t2, t2a and t2b – and
a delivery process with two sequential tasks – td1 and td2.
In the method library, the process engineer declared that t2a
and t2b are alternatives to t2. In the process work breakdown,
the process engineer declared that td1 is optional and uses t1,
and that is followed by td2 that uses t2. Then, this organiza-

tion software process actually defines four potential concrete
processes, depending on the selection on the variability: (I)
t1, t2a, (II) t1, t2b, (III) t2a, (IV) t2b. By these means, we
are using UMA constructs to specify the variable parts and
we are also using UMA constructs to specify the variants: the
actual TaskDescriptor element marked as optional and the
alternative Task elements; in the figure, td1 in the first case,
and t2a and t2b in the second case.

However, we are not using UMA constructs to establish
the conditions on which the variants must be decided upon.
The process marks td1 as optional, but it does not specify
in which development scenario td1 must be performed. The
same applies to the alternatives t2a and t2b. We capture this
information in a separate model, as we explain in Sec. III-C.
Besides, we automate the variation mechanism by which the
concrete adapted process is produced from the organization
process. We study this in Sec. V.

C. Process Variability Modeling Strategies
A condition is a rule for deciding which variant is used for a

variable part. We devise three different strategies to represent
process model variability conditions: using a predefined soft-
ware modeling language, using a specialization of an existing
language, and capturing conditions in a separate artifact.

1) Strategy V1: Use a predefined software process modeling
language: This strategy uses the constructs that are already
available in the process modeling language to capture condi-
tions in order to preserve tool support.

9



Software Process Line Modeling and Evolution

t2 : Task

variabilityType = Replaces

t2a : Task

t1 : Task

: DeliveryProcess

IsOptional = false

td2 : TaskDescriptor

IsOptional = true

td1 : TaskDescriptor

linkType = FinishToStart

: WorkOrder

pred

linkToPredecessor

variability
BasedOnElement

variabilityType = Replaces

t2b : Task

variability
BasedOnElement

task

task

superActivities

breakdownElements

superActivities

breakdownElements

superActivities

breakdown
Elements

Organization Software Process (EPF)

Fig. 13. Organization Software Process Specified in UMA

UMA

xUMA

Organization 
Software Process

(xUMA)

c2

UMA

xUMA

Organization 
Software Process

(xUMA)

c2

OCL

(a) (b)

Fig. 14. UMA extensions to support variability specification

V1 has several advantages: (1) requires a single modeling
language, (2) requires a single terminal model, and (3) there
is tool support already developed and maintained by a large
community. However, it also has several drawback: (1) there
are no specific constructs for establishing variability conditions
resolution, (2) there are no constructs for characterizing the de-

velopment scenario, and (3) it limits the process specification
to a particular modeling language.

2) Strategy V2: Use a specialization of a predefined soft-
ware process modeling language: The goal of Strategy V2
is to define an extension of the process modeling language
introduced by purpose-specific constructs. Thus, by this strat-

10



Software Process Line Modeling and Evolution

egy we define xUMA, an extended metamodel of UMA, that
includes constructs for conditions, and that refines the Task
and TaskDescriptor metaclasses in UMA in order to attach
conditions to their instances. In order to model conditions, we
can follow two strategies. We can define ad hoc constructs
directly in xUMA. This strategy provides the flexibility of
choosing the constructs that best fit our needs but it is also
hard to define and maintain. We can use constructs that
are defined in a purpose-specific language, i.e., using an
expression language for models such as OCL. In this case, the
ad hoc constructs in xUMA are only those needed to attach
conditions to process elements. In particular, we need to define
a sub-metaclass of Task and TaskDescriptor that appends
a condition attribute to their respective base metaclass. The
advantage of this strategy is that the language and the tool
support is defined and maintained by a larger community. The
main drawback is that it may be harder to learn. Figure 14
shows both strategies. In (a), we define xUMA as an extension
of UMA with ad hoc constructs, and in (b) we define xUMA
as an extension of both UMA and OCL.

Conditions must also refer to properties that are external to
the process itself, and that characterize the scenario in which
the process is enacted. So we need purpose-specific constructs
to characterize the context. Again, we have two strategies:
either to include those constructs directly in xUMA, or to
define them in a separate metamodel and make xUMA extend
it. Figure 15 illustrates the application of this latter strategy.

Then, in xUMA, the MethodLibrary metaclass must also
be extended to attach a Context to it, and thus, allowing the
Condition expressions to refer to the context of the project
enacting the process.

The main advantage of Strategy V2 is that it provides
purpose-specific constructs to capture conditions. If we use
ad hoc constructs in xUMA we still have a single model-
ing language. However, if we make xUMA to extend from
separated modeling languages (like OCL and Organization
Projects Context language), although they are unified in a
single metamodel (xUMA), practitioners need to learn and
apply more than one language. However, this strategy requires
only a single metamodel xUMA for defining Organization
Software Processes. Having a single terminal model makes
no separation of concerns as everything is captured together.
In other words, there is no separated artifact that centralizes
all conditions, but rather, conditions are tangled throughout
the elements of the software process terminal model. On the
other hand, V2 also has some drawbacks We lose purpose-
specific tool support since EPF Composer does not use the
specialized constructs for specifying conditions, so we would
have to transform the UMA model into xUMA to be later
manually edited by practitioners.

3) Strategy V3: Capture conditions separately in a special-
ized artifact: The goal of Strategy V3 is to provide separation
of concerns between process modeling and the conditions on
which variability is resolved, and to count on tool support.
Strategy V3 consists of using separated artifacts to capture
the process, the context for enacting the process, and the

conditions to decide which variant must be used for each
variable part. By this means, conditions (i.e., the decision
rules) are captured in a centralized model. Then, a complete
software process with variability is defined by means of three
artifacts, as shown in Fig. 16.

While the Organization Software Process and Organiza-
tion Projects Context terminal models are self-contained, the
Variation Decision Rules terminal model makes references
to model elements in the other two. First, each decision is
attached to a variable part and a variant in the Organization
Software Process. For instance, a decision states whether
a specific optional task in the process should be performed
or not. For example, if Task t1 is included then Task t2 is
also included is a valid condition, and Task t1 is included if
Project type is corrective maintenance.

The main problem with this representation is that the
relationship of elements in the Variation Decision Rules
terminal model with elements in the other terminal models
is by name and there is a replication of model elements in
the different terminal models. Instead we use a native MDE
mechanism to connect the models, namely model weaving, as
shown in Fig. 17.

However, this model weaving only partially solves the
problem because the Variation Decision Rules terminal
model still includes a representation of the elements in the
other terminal models. Ideally, the Variation Decision Rules
terminal model should not have another representation of the
model elements in the other terminal models, but the actual
links to them. Then, the Variation Decision Rules terminal
model can be considered itself as a semantic relationship
between elements in the software process and elements in the
organization context. In other words, it can be itself a weaving
model as shown in Fig. 18.

In this case we need a customized metamodel for the
weaving model as the simple links provided by AMWCore5

are not enough for expressing conditions. If a predefined
expression language is used for capturing conditions, then, the
weaving metamodel must also extend the metamodel of such
language. Figure 19 shows the use of OCL as such language.

Strategy V3 allows for tool support for modeling software
processes as it relies on UMA. However, a separated modeling
tool must be used to capture the other two terminal models.
To this end, we have developed a purpose-specific tool for the
edition of these terminal models and then complementing EPF
Composer for the complete definition of organization software
processes with variability and variation resolution. The current
implementation does not support OCL, it defines an ad hoc
language that supports equality, conjunction and disjunction,
as well as parenthesis.

4) Strategy V4: Use a controlled process modeling lan-
guage: The goal of Strategy V4 is to improve Strategy V3 by
making our modeling artifacts and tools independent of any
specific process modeling language or version of modeling
language. To this end, instead of using UMA as the modeling

5http://www.eclipse.org/gmt/amw

11

http://www.eclipse.org/gmt/amw


Software Process Line Modeling and Evolution

Organization
Projects Context

UMA

xUMA

Organization 
Software Process

(xUMA)

c2

OCL

Fig. 15. UMA extensions to support variability and context specification

Organization
Projects Context

UMA

Organization 
Software Process

(EPF)

c2

Organization
Projects Context

Variation
Decision Rules

Variation
Decision Rules

c2 c2

Fig. 16. Separated models for specifying process, context, and decision rules

«weaving»
AMWCore

«weaving»
Decisions
in Context

Organization
Projects Context

UMA

Organization 
Software Process

(EPF)

c2

Organization
Projects Context

Decisions
in Process

Variation
Decision Rules

woven woven

«weaving»
Decisions
in Process

c2 c2

Variation
Decision Rules

Decisions
in Context

wovenwoven

woven woven wovenwoven

c2c2

Fig. 17. Relating process, context, and decision rules with weaving models

language, this strategy relies on eSPEM that we defined in
Sec. IV-A, as seen in Fig. 20.

Strategy V4 is independent on a specific version of a process
modeling language. However, it requires additional tools. As

we discussed in Sec. IV-A, by using a controlled process
modeling language we can make our approach to work with
different source modeling artifacts, such as different versions
of UMA and SPEM. However, we need a custom tool for

12



Software Process Line Modeling and Evolution

Organization
Projects Context

UMA

Organization 
Software Process

(EPF)

c2

Organization
Projects Context

Variation
Decision Rules

«weaving»
Variation

Decision Rules

woven woven

«weaving»
AMWCore

c2 c2

woven woven

Fig. 18. Relating process, context, and decision rules with one weaving model

OCL

Organization
Projects Context

UMA

Organization 
Software Process

(EPF)

c2

Organization
Projects Context

Variation
Decision Rules

«weaving»
Variation

Decision Rules

«weaving»
AMWCore

c2 c2

woven woven

woven woven

Fig. 19. Weaving model and a language for conditions (e.g., OCL)

generating process models conforming to eSPEM from those
sources. The injectors discussed fulfill this purpose.

5) Resolution: The current implementation of our toolset
follows a combination of Strategies V3 and V4. Following
Strategy V3 we decided to use separated models to capture
the process, the decision rules and the organization context. In
particular, we use the first variant of this strategy in which the
interrelation of the models is implicit and that does not rely
on weaving models. The drawbacks of replication of model
elements and the lack of validation are overcome by means
of the toolset. We developed a user-friendly front-end for
populating the Variation Decision Rules and Organization
Projects Context terminal models. This tool is in charge of
preserving the consistency of the relationships between the
model elements of the terminal models. Following Strategy V4

we decided to use a controlled modeling language, particularly
eSPEM. Then, the artifacts involved are illustrated in Fig. 21.

D. Context Modeling

The Organization Projects Context terminal model cap-
tures the characterization of the contexts in which the Or-
ganization Software Process can be enacted. This model
provides the vocabulary for the Variation Decisions Rules to
select the specific variants for particular development scenarios
(contexts). Then, at the beginning of a software development
project, the project manager determines the concrete char-
acterization of the context for the specific project at hand.
This concrete characterization is used to select the concrete
software process that the development team has to enact.
This characterization is a configuration of the Organization

13



Software Process Line Modeling and Evolution

Organization
Projects Context

eSPEM

Organization 
Software Process

c2

Organization
Projects Context

Variation
Decision Rules

«weaving»
Variation

Decision Rules

woven woven

«weaving»
AMWCore

c2 c2

woven woven

Fig. 20. Weaving model with eSPEM for process modeling

Organization
Projects Context

eSPEM

Organization 
Software Process

c2

Organization
Projects Context

Variation
Decision Rules

Variation
Decision Rules

c2 c2

Fig. 21. Adopted Solution Structure

Projects Context in the sense that it establishes a single
value for each attribute of each dimension. While the Orga-
nization Projects Context terminal model is specific to the
organization, the Project Context terminal model is specific
to a single project of the organization. We devise different
modeling strategies to capture the concrete context for a
particular project: a shared metamodel,separated metamodels,
a metamodel extension, a weaving model, and an annotation
model.

1) Strategy C1: Shared metamodel: Strategy C1 relies on
the fact that a Project Context is a configuration of the
Organization Projects Context. While the latter defines the
set of possible Values for each Attribute of each Dimension,
the former consists of the selection of a single Value from
each set. Thus, the same modeling constructs and practically
the same model elements in the Organization Projects Con-
text also appear in a Project Context. Then, following this
strategy we have a single modeling language, captured by the
Organization Projects Context metamodel, to express the
Organization Projects Context and every Project Context
as shown in Fig. 22.

The advantage of this strategy is its simplicity, and thus
it is easy to learn. However, provided that both are different

Organization
Projects Context

Organization
Projects Context

Project
Context

c2 c2

Fig. 22. Organization Projects Context and Project Context

kind of model, there are invalid configurations. For the process
engineer that builds the Organization Projects Context, the
metamodel must allow him to capture a set of Values for
each Attribute of each Dimension, but the ability to select a
single Value is not just irrelevant for the process engineer, but
forbidden. Similarly, the project manager cannot select a set
of Values, but only one for each Attribute. There are also im-
plicit relationships since a Project Context is a configuration
of a given Organization Projects Context such as the one-to-
one relationship between Dimensions and Attributes in both

14



Software Process Line Modeling and Evolution

Project
Context

Organization
Projects Context

Organization
Projects Context

Project
Context

c2 c2

Fig. 23. Separated Organization Projects Context and Project Context

Project
Context

Organization
Projects Context

Organization
Projects Context

c2

Project
Context

c2

Fig. 24. Extended Separated Organization Projects Context and Project
Context

models. Having only one metamodel makes this relationship
implicit and the validation of well-formedness is delegated by
an external tool. In addition, there is a replication of model
elements in both kinds of models, requiring additional effort
to build them.

2) Strategy C2: Separated metamodels: Strategy C2 consist
of defining two different metamodels instead of a single shared
one. One metamodel defines the modeling language to capture
Organization Projects Context terminal models, and the
other metamodel defines how to capture Project Context
terminal models, as show in Fig. 23. The integrity is achieved
at the expense of simplicity.

3) Strategy C3: Metamodel extension: Strategy C3 consist
of using the metamodel extension capability for the definition
of the modeling languages. We devise two possible appli-
cations of metamodel extension in this scenario. First, we
can define the Project Context metamodel as an extension
of the Organization Projects Context metamodel. Thus, the
Project Context metamodel has all the constructs of the
Organization Projects Context, and adds those specific to
the selection of Values. This is shown in Fig. 24.

This solution resolves the replication of modeling con-
structs, but it reintroduces the problem of forbidden con-
structs. In particular, the Project Context metamodel provides
constructs for defining sets of Values for Attributes, which
should not be possible. Nevertheless, given that we now have
two separate metamodels, the usage of forbidden constructs
can be structurally validated by means of invariants (well-
formed rules attached to a metamodel). Thus, the constructs
are available but the modeling environment alerts the modeler

Context

Project
Context

Organization
Projects Context

Organization
Projects Context

c2

Project
Context

c2

Fig. 25. Another Extended Separated Organization Projects Context and
Project Context

that they must not be used. A second application of metamodel
extension that does not pose this issue is by defining a
base metamodel with the common set of constructs, and two
extensions, one for each kind of terminal model (shown in
Fig. 25). In this case, each metamodel only defines the set
of constructs that is expected, and we also eliminate the
replication of modeling constructs as they are defined in the
base Context metamodel. However, this strategy introduces
another modeling artifact to maintain.

4) Strategy C4: Weaving model: The goal of Strategy C4 is
to make explicit the relationship between the model elements
of the two terminal models by defining a weaving model to
capture the links between the corresponding model elements.
This strategy is shown in Fig. 26.

While the Organization Projects Context metamodel re-
mains the same as in previous strategies, the Project Context
metamodel must be rethought. If this metamodel provides
the same set of constructs as in previous strategies (i.e.,
Dimensions, Attributes and selected Value), we again face
the problem of replicated language constructs. However, pro-
vided that this strategy includes a weaving model, the Project
Context metamodel does not need to define Dimensions and
Attributes, it just need to define a Selection, which is linked
to the selected Values defined in the Organization Projects
Context. By this means we do not replicate the constructs.
But, as a consequence, the Project Context metamodel just
defines a single Selection construct for the sole purpose of
having something to link with by the weaving model, and
hence, the Project Context terminal models just define a
single model element instance of such selection. In other
words, the actual selection is in the weaving model and is
captured by the defined links. Then, this strategy uses too
many artifacts and some of them, particularly those concerning
project context, only capture information that is available in
other models.

15



Software Process Line Modeling and Evolution

Context
Relationship

Project
Context

Organization
Projects Context

Organization
Projects Context

Project
Context

c2 c2

«weaving»
Context

Relationship

c2

«weaving»
AMWCore

woven woven

woven woven

Fig. 26. Weaving Context Models

Project
Context

Organization
Projects Context

Organization
Projects Context

c2

«weaving»
Project
Context

c2

«weaving»
AMWCore

woven

woven

Fig. 27. Annotated Weaving Context Models

5) Strategy C5: Annotation model: The goal of Strategy
C5 is to solve the problem of strategy C4 while preserving
all the advantages gained by the previous strategies. Strategy
C5 relies on the fact that a Project Context terminal model
is a configuration of the Organization Projects Context, and
as such, the former solely appends information to the latter.
In terms of MDE constructs, this can be achieved by an
annotation model, the particular kind of weaving model that
has a single woven model. This strategy is shown in Fig. 27.

The Project Context weaving metamodel only defines the
specific kind of link that represents the selection of a Value
defined in the woven models. By this means, this strategy does
not pose any of the problems of the previous strategies.

6) Resolution: The current implementation of our toolset
follows Strategy C1 for its simplicity, and overcome its

drawbacks by means of a user-friendly toolset for building
the terminal models and keeping them consistent. In practice,
the process engineer of a SSE uses our toolset to define
the single Organization Projects Context terminal model
for the organization. Later, at the beginning of each project,
the project manager uses our toolset to define the specific
Project Context terminal model. The toolset uses the defined
Organization Projects Context terminal model to offer the
project manager the available values to select, and hence,
capturing a well-formed Project Context terminal model. As
future work, we plan to fully embrace Strategy C5 and make
our toolset rely on standard MDE constructs and tools to
preserve and validate the well-formedness of these terminal
models.

V. SPRL TAILORING

Given the megamodel defined in Section IV, we can now
formally define SPrL process tailoring. Process tailoring is
one possible application enabled by our megamodel, other
uses include for example process analysis and evolution. In
our approach, process tailoring is divided into two steps: 1)
generation and 2) application of the tailoring transformation.
Figure 28 and 29 show how these steps are formalized using
our megamodel, respectively.

A. Tailoring transformation generation

Once the Organization Projects Context and Variation
Decision Rules terminal models have been defined by the
process engineer, we can generate the tailoring transformation.
This is done using an organization-independent Higher Order
Transformation (HOT) [50] that takes these two models as
input and automatically generates an organization-specific
process tailoring transformation. In Fig. 28, Tailor Generation
and Tailor represent the HOT transformation and the tailoring
transformation, respectively. As reported in [46], the HOT has
been implemented in Java, and the tailoring transformation

16



Software Process Line Modeling and Evolution

Organization
Projects Context

Organization
Projects Context

Variation
Decision Rules

Variation
Decision Rules

Tailor
Generator

Tailor
Generation

Record

c2 c2

source

source

source

source

«transform»
ATL

Tailor

c2

target

target

transformation

«transform»
Java

c2

Fig. 28. Tailoring transformation generation.

Project
Context

Organization
Projects Context

Organization
Software Process

eSPEM

Tailor

Tailoring
Record

c2 c2

source

source

source

source

eSPEM

Adapted
Software Process

c2

target

target

transformation

«transform»
ATL

c2

Fig. 29. Tailoring transformation application.

conforms to ATL. Figures 30 shows an excerpt of the tailoring
transformation, which was generated using the models shown

in Fig. 2 and 6. Moreover, a Tailor Generation Record is
registered each time the HOT transformation is executed.

17



Software Process Line Modeling and Evolution

Fig. 31. Three different project context configurations defined by Mobius.

Fig. 30. Excerpt of the tailoring transformation generated for Mobius’ SPrL.

B. Tailoring transformation application

Before starting a new project, the project manager must
define the project’s context values (Project Context termi-
nal model in Fig. 29). Figure 31 shows three project con-
texts for Mobius in tabular form: New Development project
(A), Corrective Maintenance project (B), and Non-corrective
Maintenance project (C). The tailoring transformation Tailor

Fig. 32. Requirements activity, tailored to Context A.

generated in the previous subsection takes as input one of these
contexts, as well as the Organization Software Process,
generating the Adapted Software Process for that project
context. For example, if the project manager chooses Context
A, the process shown in Fig. 32 is generated for the new
project. Choosing Context B results in the process shown
in Fig. 33, which is quite different. Each application of the
tailoring transformation is registered (see Tailoring Record in
Fig. 29).

VI. SPRL EVOLUTION

We now discuss how our megamodel enables process line
evolution, using as examples change requests that Mobius is
now planning to carry out on their SPrL.

A. Unit of Evolution

Change can occur at any level of our megamodel: both in
the organization-independent and -specific models, as well as
in the project-specific models. Moreover, the standards used

18



Software Process Line Modeling and Evolution

Fig. 33. Requirements activity, tailored to Context B.

by the ADAPTE project can also change (SPEM 2.0, UMA,
ATL, etc.). Not being able to deal with these types of changes
reduces the expected lifetime of an SPrL, and not dealing with
them in a uniform and systematic manner reduces the chances
of industrial adoption of our approach.

Also, we expect that some types of changes will be more
frequent than others. For example, the organizational process
model, the organizational context, and tailoring rules may
change soon after SPrL definition, to account for differences
between the modeled process and the actual process carried
out by the company. These artifacts may also change as a
result of an SPI process [23]. Other elements, like the HOT
or the eSPEM model, are less likely to change, as they have
stabilized over the course of the ADAPTE project.

Thus, according to the evolution profiles defined in [20],
our SPrLs are under continuous evolution: evolution can occur
at the domain or application level; model elements can be
added, removed or modified; and changes to the relationship
between context elements and variation points may lead to
a reorganization of the variation decision rules, as well as
changes to the transformations.

In practice, continuous evolution means an increased main-
tenance effort and model complexity for large systems in
relation to small and simple systems [20]. Weak tool support
also makes it hard to carry out preventive changes in the SPrL
that would improve its evolution (and shelf-life). All this leads
to Product Line Erosion [38], [26]: an increasing deviation
from the requirements specification, such that key properties
of the product line no longer hold.

Good tool support for evolution should enable a typical
software change process, like the one defined by Rajlich [41].
Here, (semi-)automated change impact analysis and propa-
gation are key to empowering the change process, allowing
the engineer to better understand the impact of the proposed
evolution of the SPrL. This is one of the main advantages
of our megamodeling-based SPrL approach: as dependencies
between the different models and transformations are explicit
in the megamodel, our tools can offer automated change

impact analysis without requiring additional effort than that
already required to define the SPrL. We can also offer ver-
sioning, as the megamodel is a catalog of the artifacts in the
model repository, and we keep track of all changes using
transformation records. By reducing the SPrL maintenance
effort, we expect to see an increase in the lifetime of the SPrLs
defined by our partner companies.

B. Organizational Process Management

The definition of a software process using EPF Composer is
labor-intensive, even for a small process. So taking advantage
of this investment is appealing. Changes such as adding a
new template for a work product, or changing the role in
charge of a task should be easy to carry out, as these kinds of
changes are quite frequent. Moreover, process variation points
may change over time. For example, if the template assigned
to the Architecture Prototype work product needs to be
changed, it can be done directly in the EPF Composer and then
the Injector needs to be re-run. The updated Organizational
Software Process will refer to the new template for all future
projects.

Having a formally defined process does not necessarily
mean that it is the most efficient or appropriate process. If
the process is analyzed with a tool, we can determine if there
is an overloaded role that may cause inefficiencies, or if there
is a role that does not interact with any other. In both cases,
the EPF Composer definition of the process can be modified
so that overloaded roles delegate some of their responsibilities,
and that isolated roles are either assigned to tasks, or removed
from the process definition.

For example, Mobius wants to update their Organizational
Software Process, removing the System architecture defi-
nition task from the Requirements activity shown in Fig. 5.
In order to evolve the SPrL, the process engineer must first
update the Organizational Software Process using EPF
Composer. This will leave the Variation Decision Rules in
an inconsistent state, as it now refers to a process element
that no longer exists. As our toolset checks the consistency
between these models, it can notify the process engineer, who
must confirm the proposed changes to the decision model. This
in turn triggers the execution of the HOT, producing a new
tailoring transformation (see Sec. V). Now, when the process
manager picks Context A for a new project, the resulting
adapted process is similar to the one shown in Fig. 32,
but it does not include the System architecture definition
task because it is no longer in the Organizational Software
Process.

C. Context Evolution

Context values vary for each project, a new Project Context
should be created. Then, the tailoring transformation can be
executed in order to obtain the Adapted Software Process.
This kind of change is not dramatic, but is quite frequent, so
tool support is essential. For example, if the project manager
picks Context A, but then changes the value of the context
attribute Usability to Low, the resulting adapted process is

19



Software Process Line Modeling and Evolution

similar to the one shown in Fig. 32, but it does not include
the UI design task.

On the other hand, the Organization Projects Context
may require changes such as adding, modifying or deleting
context attributes and/or their values. This affects the creation
of new Project Contexts. If attributes or values are removed
or modified in the Organization Projects Context, then the
Variation Decision Rules must be checked for consistency.
Adding, updating or removing attributes or values may require
adding new rules, updating existing rules, or removing existing
rules.

Either way, the Tailor Generator must be re-run if the
Variation Decision Rules changes, creating a new version
of the tailoring transformation. For example, if the context at-
tribute Request is removed from the Organization Projects
Context, the variation decision rule attached to the decision
node in Fig. 5 must be updated to Project = corrective. Re-
running the HOT will create a new version of the tailoring
transformation. Now, when the project manager picks Context
A, the resulting adapted process is exactly the same as the one
shown in Fig. 32, since Project type = corrective is true in
this context.

D. Tailoring Rule Evolution

Tailoring rules should evolve when the Adapted Software
Process generated by the tailoring transformation is not as
expected. If the problem is in the Organization Software
Process, then the procedure described in Sec. VI-B must be
followed; if it is in the Project Context, then the procedure
in Sec. VI-C must be followed. However, if both models are
correct, it means that the relationship between the two is what
is incorrectly defined, and therefore the Variation Decision
Rules must be analyzed, checking if the mapping between
the context attributes and variation points is correctly specified.
Once this model is updated, the HOT must be re-run to create
a new tailoring transformation.

VII. RELATED WORK

In this section, we survey current work on process variability
modeling and evolution, and compare it with our approach.

A. Process Variability Modeling

SPEM 2.0 defines four primitives for specifying variability
between two process elements of the same type [35]: con-
tributes, replaces, extends and extends-replaces. It is hard to
predict how variability relations interact with each other, as
instances of these relations may override each other, which
limits the practical use of this approach. Martı́nez et al. [33]
propose vSPEM, a SPEM extension that allows the direct
specification of process variability. In this proposal, the process
engineer defines process variation points, and in a separate
model documents variants and their relationships to variation
points. vSPEM is a concise notation with the added advantage
that it is specific to the process domain. However, existing tool
support is at an academic prototype level, without graphical

user interfaces, making it a poor candidate for industrial
adoption.

Feature Models [27] (FM) can also be used to model process
variability. Using FMs, each process element is represented as
a feature. Optional variation points are modeled as optional
features, and process elements that can be realized in different
ways are modeled using alternatives. Requires constraints are
added to ensure that existing links between roles and tasks,
and tasks and work products are preserved. This approach has
been explored in [25], [17], but it is limited in that variability
is “lost” in the FM when working with process lines (many
common elements and few variation points). Moreover, the
FM and the organizational process model must co-evolve,
introducing additional evolution challenges.

Business Process Models (BPM) [51] are used to model
general business processes. There have been several proposals
for capturing variability in BPMs. For example, Hallerbach
et al. [18] introduce the notion of “options”, sequences of
change operations over the base BPM (insert, delete or move
BPM fragment, and modify element attribute) that are applied
at “adjustment” points which are explicitly identified in the
base BPM. Variant BPMs are then created by executing one
or more options. The drawback of this type of approach is that
variability is specified operationally, so changing the order in
which options are applied can lead to different variants. It
also gets harder to understand how options interact as the set
of options grows, or as the individual options become more
complex.

Configurable Event-Driven Process Chains [43], [29] (C-
EPC) is another approach for modeling business process
variability. EPCs are directed graphs, nodes are events or
functions, and logical connectors are used to define control-
flow. C-EPC extends EPC by adding configuration nodes:
functions and decision nodes are annotated with constraints
to indicate whether they are mandatory or optional; these
constraints are predicates over C-EPC elements. Variant C-
EPCs are created by processing these annotations. Notation-
wise, development processes specified using C-EPCs can be
hard to understand: 1) all process elements must be modeled
as function nodes, 2) context information cannot be used to
resolve variability, and 3) alternatives must be modeled using
decision nodes. This is especially confusing to the end-user, as
some represent control-flow decisions whereas others represent
variability.

The DOPLER [13] approach is the closest to ours in
spirit. Assets are defined using models, and the relationships
between them are specified using a decision model. This
allows automatic product derivation and reconfiguration: based
on the decisions made by the stakeholder, components can be
automatically selected for inclusion in the configured system
and components can be instantiated and composed as required.
Our megamodel can be seen as a generalization of this
approach, as the input metamodels can be changed as needed
by the problem domain. Currently, DoplerVML is more ex-
pressive than our decision model; however, our decision model
is sufficiently expressive to allow the specification of the

20



Software Process Line Modeling and Evolution

variation decisions found in the process domain, and we can
improve the expressiveness of our approach by changing the
corresponding metamodel in the megamodel.

B. Variability Evolution

Recent empirical studies [9], [55] argue that existing ap-
proaches offer weak tool support for product line evolution.
Without adequate tool support for change propagation, it is
hard for engineers to understand the possible impact of their
changes to feature hierarchies, and as a result, evolution is
primarily limited to adding features and decisions [5]. As
a consequence, the models supporting SPL definition and
derivation are seldom refactored, leading to an increase in
model complexity over time.

Several ad hoc traceability models have been proposed as
a way to control product line evolution (cf. [1], [45], [2]).
Model-based approaches for modeling and evolving product
lines have also been defined in the literature (cf. [49], [52],
[30], [14], [21], [39]); however, to our knowledge, we are the
first to generalize this approach by defining a megamodel for
product lines, enabling product line evolution in a controlled
and uniform manner.

VIII. CONCLUSIONS AND FUTURE WORK

There are several factors affecting the adoption of software
processes in industry: (a) the complexity, expressiveness and
understandability of the notations and languages, (b) the cost
of coping with variability and of successfully achieving vari-
ability resolution for particular development scenarios, (c) the
degradation of the expensively-captured process model with
respect to the actual process enacted process due to an ill-
managed change and evolution, and (d) the availability and
usability of tool support.

While MDE techniques and tools can be regarded as a solid
foundation to address those challenges, a naı̈ve application of
MDE relying only on modeling-in-the-small constructs rapidly
degenerates in a large and complex set of modeling artifacts,
and versions of them, that are ill-managed and cannot evolve
consistently. As a consequence, the erosion of the consistency
renders those artifacts unreliably and the investment on process
modeling unproductive.

On the other hand, an application of MDE relying on
modeling-in-the-large constructs promotes control. As we
show in this article, by applying a megamodeling approach,
modeling artifacts are well-classified and cataloged and their
interrelations are explicit. Thus, the impact of change can
be readily identified and visualized. For instance, whenever a
change is required in a particular modeling artifact, the mega-
model can be navigated to analyze which related modeling
artifacts should be preserved, re-examined, or re-generated.

Also, the megamodel provides the big picture of all involved
artifacts and the role they play in the overall solution. As a
consequence, we can improve our toolset in a focused manner
to improve industrial adoption, by mitigating risks, addressing
problems, or assisting in their resolution. For instance, the
choice to introduce the proprietary process modeling language

eSPEM was to shield our solution from changes to the process
modeling approach used by SSEs. While it is not frequent for
a SSE to change its process modeling language, this scenario
is recurrent for our research team as we interact with multiple
SSEs.

Another example is the introduction of the tailor generator.
While our toolset initially relied on a custom-built tailoring
transformation, this approach did not scale as we worked with
more SSEs, so we abstracted the variation decision rules in
a purpose-specific model instead of embedding them in the
tailoring transformation. This change significantly improved
the usability of our toolset.

To conclude, we have shown that megamodeling is a
feasible solution for the definition and evolution of software
process lines. Megamodeling allows managing the complexity
of approaches that are intensive in modeling artifacts, and it is
even more relevant when those modeling artifacts evolve. The
advantages of using a megamodel include: 1) classification
and catalogization of all the modeling artifacts in use, 2)
the relationships between artifacts are made explicit and 3)
megamodeling serves as a backend for centralized and inte-
grated tool support. This allows us to (semi-)automate change
propagation among the modeling artifacts. Moreover, for a
solution that is intensive in weaving models, the underlying
platform can assist validation and traceability of change at the
model element level, not only at the modeling artifact level.
Future work. Further integration of tool support is required by
our industrial partners. As EPF is a standalone product, process
modeling is performed in a non-MDE environment. Provided
that its underlying platform is Eclipse, we plan to integrate
EPF toolset into an Eclipse Modeling edition of Eclipse, and
provide a single-IDE experience to process engineers and
project managers.

We also need to improve the visualization of the impact
of evolution. In this article we set the foundation for the
identification of the impact of change. We want to help
the process engineer manage evolution of their process line
by generating evolution “previews”, which are automatically
computed from the megamodel, the process engineer can
accept these changes as-is if she/he is happy with them.

REFERENCES

[1] S. Ajila and B. A. Kaba. Using traceability mechanisms to support
software product line evolution. In D. Zhang, . Grgoire, and D. DeGroot,
editors, IRI, pages 157–162. IEEE Systems, Man, and Cybernetics
Society, 2004.

[2] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer,
A. Rummler, and A. Sousa. A model-driven traceability framework for
software product lines. Software & Systems Modeling, 9(4):427–451,
2010.

[3] M. Barbero, F. Jouault, and J. Bézivin. Model Driven Management
of Complex Systems: Implementing the Macroscope’s Vision. In
Proceedings of the 15th Annual IEEE International Conference and
Workshop on Engineering of Computer Based Systems (ECBS’2008),
31 March - 4 April 2008, Belfast, Northern Ireland, pages 277–286,
Washington, DC, USA, 2008. IEEE Computer Society.

[4] V. R. Basili and H. D. Rombach. Tailoring the Software Process to
Project Goals and Environments. In Proceedings of the 9th International
Conference on Software Engineering, ICSE ’87, pages 345–357, Los
Alamitos, CA, USA, 1987. IEEE Computer Society Press.

21



Software Process Line Modeling and Evolution

[5] T. Berger, D. Nair, R. Rublack, J. Atlee, K. Czarnecki, and A. Wsowski.
Three cases of feature-based variability modeling in industry. In J. Din-
gel, W. Schulte, I. Ramos, S. Abraho, and E. Insfran, editors, Model-
Driven Engineering Languages and Systems, volume 8767 of Lecture
Notes in Computer Science, pages 302–319. Springer International
Publishing, 2014.

[6] J. Bézivin. On the unification power of models. Software and System
Modeling, 4(2):171–188, 2005.

[7] J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels.
In Best Practices for Model-Driven Software Development Workshop,
at the Third International Conference on Generative Programming
and Component Engineerings (GPCE’2004), co-located with the 19th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’2004), 24-28 October
2004, Vancouver, Canada, 2004.

[8] P. Borges, P. Monteiro, and R. Machado. Mapping RUP Roles to Small
Software Development Teams. In S. Biffl, D. Winkler, and J. Bergsmann,
editors, Software Quality. Process Automation in Software Development,
volume 94 of Lecture Notes in Business Information Processing, pages
59–70. Springer Berlin Heidelberg, 2012.

[9] L. Chen and M. Babar. Variability management in software product
lines: An investigation of contemporary industrial challenges. In
J. Bosch and J. Lee, editors, Software Product Lines: Going Beyond,
volume 6287 of Lecture Notes in Computer Science, pages 166–180.
Springer Berlin Heidelberg, 2010.

[10] A. Cockburn. Crystal Clear a Human-powered Methodology for Small
Teams. Addison-Wesley Professional, first edition, 2004.

[11] K. Conboy and B. Fitzgerald. Method and Developer Characteristics
for Effective Agile Method Tailoring: A Study of XP Expert Opinion.
ACM Trans. Softw. Eng. Methodol., 20(1):2:1–2:30, July 2010.

[12] B. Curtis, M. I. Kellner, and J. Over. Process modeling. Commun. ACM,
35(9):75–90, Sept. 1992.

[13] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER Meta-
tool for Decision-oriented Variability Modeling: A Multiple Case Study.
Automated Software Eng., 18(1):77–114, Mar. 2011.

[14] D. Dhungana, T. Neumayer, P. Grunbacher, and R. Rabiser. Supporting
evolution in model-based product line engineering. In Software Product
Line Conference, 2008. SPLC ’08. 12th International, pages 319–328,
Sept 2008.

[15] Eclipse. Eclipse process framework project 1.5.1.6, 2013. http://projects.
eclipse.org/projects/technology.epf.

[16] M. C. B. Felipe González, L. Silvestre, and M. Solari. Template-Based
vs. Automatic Process Tailoring. In XXXIII International Conference
of the Chilean Society of Computer Science (SCCC 2014), November
2014.

[17] G. GröNer, M. BošKović, F. Silva Parreiras, and D. GašEvić. Modeling
and validation of business process families. Inf. Syst., 38(5):709–726,
July 2013.

[18] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in
business process models: The provop approach. J. Softw. Maint. Evol.,
22(67):519–546, Oct. 2010.

[19] P. Haumer. Ibm rational method composer: Part 1: Key concepts.
Technical Report http://www.ibm.com/developerworks/rational/library/
dec05/haumer/index.html, IBM: The Rational Edge.

[20] W. Heider, R. Froschauer, P. Grünbacher, R. Rabiser, and D. Dhungana.
Simulating evolution in model-based product line engineering. Inf. Softw.
Technol., 52(7):758–769, July 2010.

[21] W. Heider, R. Rabiser, D. Dhungana, and P. Grnbacher. Tracking
evolution in model-based product lines, 2009.

[22] W. S. Humphrey. Managing the Software Process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[23] J. Hurtado Alegria, M. Bastarrica, and A. Bergel. Avispa: a tool for
analyzing software process models. Journal of Software: Evolution and
Process, 26(4):434–450, 2014.

[24] J. Hurtado Alegrı́a, M. Bastarrica, S. Ochoa, and J. Simmonds. MDE
software process lines in small companies. J. of Systems and Software,
86(5):1153–1171, 2013.

[25] J. Hurtado Alegria, M. Bastarrica, A. Quispe, and S. Ochoa. An MDE
approach to software process tailoring. In Proc. of ICSSP, pages 43–52,
2011.

[26] John D. McGregor. The Evolution of Product Line Assets. Technical
Report CMU/SEI-2003-TR-005. ESC-TR-2003-005, Carnegie Mellon
Seoftware Engineering Institute, 2003.

[27] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A
feature-oriented reuse method with domain-specific reference architec-
tures. Ann. Softw. Eng., 5:143–168, January 1998.

[28] M. Kuhrmann, D. M. Fernández, and R. Steenweg. Systematic software
process development: Where do we stand today? In Proceedings of the
2013 International Conference on Software and System Process, ICSSP
2013, pages 166–170, New York, NY, USA, 2013. ACM.

[29] M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A. ter Hofstede.
Questionnaire-driven configuration of reference process models. In
J. Krogstie, A. Opdahl, and G. Sindre, editors, Advanced Information
Systems Engineering, volume 4495 of Lecture Notes in Computer
Science, pages 424–438. Springer Berlin Heidelberg, 2007.

[30] J. Liu, J. Dehlinger, H. Sun, and R. Lutz. State-based modeling to
support the evolution and maintenance of safety-critical software product
lines. Engineering of Computer-Based Systems, IEEE International
Conference on the, 0:596–608, 2007.

[31] J. Lonchamp. A Structured Conceptual and Terminological Framework
for Software Process Engineering. In In Proceedings of the Second
International Conference on the Software Process, pages 41–53. IEEE
Computer Society Press, 1993.

[32] G. Luger. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving (5th Edition). Pearson Addison Wesley, 2004.

[33] T. Martnez-Ruiz, F. Garca, M. Piattini, and J. Mnch. Modelling software
process variability: an empirical study. IET Software, 5(2):172–187,
2011.

[34] ModelPlex Project. Deliverable D2.1.a: “Global Model Management
Principles”, March 2008. http://docatlanmod.emn.fr/AM3/
Documentation/D2-1-a Global Model Management Principles
v1-1.pdf (accessed on August 2014).

[35] Object Management Group. Software Process Engineering Metamodel
SPEM 2.0 OMG Specification. Technical Report ptc/07-11-01, 2008.

[36] OMG. Analysis and design task force. spem final adopted specification.
Technical Report ptc/02-01-23, Object Management Group, 2002.

[37] L. Osterweil. Software Processes Are Software Too. In Proceedings of
the 9th International Conference on Software Engineering, ICSE ’87,
pages 2–13, Los Alamitos, CA, USA, 1987. IEEE Computer Society
Press.

[38] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, Oct. 1992.

[39] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski.
Model-driven support for product line evolution on feature level. J. Syst.
Softw., 85(10):2261–2274, Oct. 2012.

[40] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[41] V. Rajlich. Software Engineering: The Current Practice. CRC Press,
2011.

[42] J. Ralyté, R. Deneckère, and C. Rolland. Towards a generic model for
situational method engineering. In Proceedings of the 15th International
Conference on Advanced Information Systems Engineering, CAiSE’03,
pages 95–110, Berlin, Heidelberg, 2003. Springer-Verlag.

[43] M. Rosemann and W. M. P. van der Aalst. A configurable reference
modelling language. Inf. Syst., 32(1):1–23, Mar. 2007.

[44] K. Schmid and I. John. A customizable approach to full lifecycle
variability management. Sci. Comput. Program., 53(3):259–284, Dec.
2004.

[45] L. Shen, X. Peng, and W. Zhao. A comprehensive feature-oriented
traceability model for software product line development. 2014 23rd
Australian Software Engineering Conference, 0:210–219, 2009.

[46] L. Silvestre, M. C. Bastarrica, and S. F. Ochoa. Generating Transfor-
mations with Two Input Models. In SCCC 2013, 2013.

[47] L. Silvestre, M. C. Bastarrica, and S. F. Ochoa. A Model-based Tool
for Generating Software Process Model Tailoring Transformations. In
MODELSWARD 2014 - Proceedings of the 2nd International Confer-
ence on Model-Driven Engineering and Software Development, Lisbon,
Portugal, 7 - 9 January, 2014, pages 533–540, 2014.

[48] Software Productivity Consortium Services Corporation. Reuse-Driven
Software Processes Guidebook, Version 02.00.03. Technical Report
SPC-92019-CMC, 1993.

[49] R. Sudarsan, S. Fenves, R. Sriram, and F. Wang. A product information
modeling framework for product lifecycle management. Computer-Aided
Design, 37(13):1399 – 1411, 2005.

[50] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the
use of higher-order model transformations. In Proceedings of the 5th

22

http://projects.eclipse.org/projects/technology.epf
http://projects.eclipse.org/projects/technology.epf
http://www.ibm.com/developerworks/rational/library/dec05/haumer/index.html
http://www.ibm.com/developerworks/rational/library/dec05/haumer/index.html
http://docatlanmod.emn.fr/AM3/Documentation/D2-1-a_Global_Model_Management_Principles_v1-1.pdf
http://docatlanmod.emn.fr/AM3/Documentation/D2-1-a_Global_Model_Management_Principles_v1-1.pdf
http://docatlanmod.emn.fr/AM3/Documentation/D2-1-a_Global_Model_Management_Principles_v1-1.pdf


Software Process Line Modeling and Evolution

European Conference on Model Driven Architecture - Foundations and
Applications, ECMDA-FA ’09, pages 18–33, Berlin, Heidelberg, 2009.
Springer-Verlag.

[51] W. M. P. Van Der Aalst, A. H. M. T. Hofstede, and M. Weske. Business
process management: A survey. In Proceedings of the 2003 International
Conference on Business Process Management, BPM’03, pages 1–12,
Berlin, Heidelberg, 2003. Springer-Verlag.

[52] M. Voelter and I. Groher. Product line implementation using aspect-
oriented and model-driven software development. In Proceedings of the
11th International Software Product Line Conference, SPLC ’07, pages
233–242, Washington, DC, USA, 2007. IEEE Computer Society.

[53] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer. Software Ar-
chitecture - A Comprehensive Framework and Guide for Prac-
titioners. Springer], year = 2011, note = Publisher online:
http://link.springer.com/book/10.1007%2F978-3-642-19736-9,.

[54] D. M. Weiss and C. T. R. Lai. Software Product-line Engineering: A
Family-based Software Development Process. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

[55] B. Zhang, M. Becker, T. Patzke, K. Sierszecki, and J. E. Savolainen.
Variability evolution and erosion in industrial product lines: A case
study. In Proceedings of the 17th International Software Product Line
Conference, SPLC ’13, pages 168–177, New York, NY, USA, 2013.
ACM.

APPENDIX

Figure 34 shows our metamodel for megamodels. This is
a refined version of the GMM megamodel metamodel, with
respect to three different aspects:

1) We have eliminated tool-specific elements. This allows
us to raise the level of abstraction of the presentation of
our approach and illustrate it in a tool-agnostic manner.

2) The Relationship metaclass hierachy has been fused
into the corresponding metaclasses of the Entity meta-
class hierarchy. This change was made to simplify the
number of elements in the figures illustrating parts of
the megamodel.

3) We have explicitly modeled Weaving Metamodel and
Annotation Model as metaclasses. This allows us to
give a finer characterization of frequently used modeling
artifacts in our domain.

These changes were made to simplify the presentation of
our megamodel; however, the original metamodel is used in
our toolset.

23



Software Process Line Modeling and Evolution

Entity

Model
External
Entity

Reference
Model

Metametamodel Metamodel

Terminal
Model

WeavingModel
Transformation

Model
Megamodel

Transformation
Record

conforms-to

extensions

bases*

*

Model

1..*wovens

Reference
Model

*sources targets* *

transformation

1

Entity

*sources targets*

Annotation
Model

woven

1

{subsets}

Weaving
Metamodel

wovens

1..*

Element

Fig. 34. Metamodel for megamodels.

24


	Introduction
	Motivating Example
	Background
	Software Process Modeling
	Software Process Lines (SPrL)
	Decision Models
	Megamodeling

	SPrL Modeling
	Process Modeling Strategies
	Strategy M1: Use an ad hoc software process modeling language.
	Strategy M2: Use a standard software process modeling language.
	Strategy M3: Use a controlled software process modeling language.

	Modeling Variability in Software Processes
	Units of variability

	Process Variability Modeling Strategies
	Strategy V1: Use a predefined software process modeling language
	Strategy V2: Use a specialization of a predefined software process modeling language
	Strategy V3: Capture conditions separately in a specialized artifact
	Strategy V4: Use a controlled process modeling language
	 Resolution

	Context Modeling
	Strategy C1: Shared metamodel
	Strategy C2: Separated metamodels
	Strategy C3: Metamodel extension
	Strategy C4: Weaving model
	Strategy C5: Annotation model
	Resolution


	SPrL Tailoring
	Tailoring transformation generation
	Tailoring transformation application

	SPrL Evolution
	Unit of Evolution
	Organizational Process Management
	Context Evolution
	Tailoring Rule Evolution

	Related Work
	Process Variability Modeling
	Variability Evolution

	Conclusions and Future Work
	References
	Appendix

