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Abstract
Gradual typing combines static and dynamic typing flexi-
bly and safely in a single programming language. To do
so, gradually typed languages implicitly insert casts where
needed, to ensure at runtime that typing assumptions are not
violated by untyped code. However, the implicit nature of
cast insertion, especially on higher-order values, can jeop-
ardize reliability and efficiency: higher-order casts can fail
at any time, and are costly to execute. We propose Confined
Gradual Typing, which extends gradual typing with two new
type qualifiers that let programmers control the flow of val-
ues between the typed and the untyped worlds, and thereby
trade some flexibility for more reliability and performance.
We formally develop two variants of Confined Gradual Typ-
ing that capture different flexibility/guarantee tradeoffs. We
report on the implementation of Confined Gradual Typing
in Gradualtalk, a gradually-typed Smalltalk, which confirms
the performance advantage of avoiding unwanted higher-
order casts and the low overhead of the approach.

1. Introduction
Combining static and dynamic typing is attracting a lot of
attention, both from industry (e.g. TypeScript, Dart) and
academia (e.g. [1, 4–7, 10, 13, 14, 17, 19, 20, 24, 25, 28]).
Gradual typing [19, 20] is a partial typing technique that al-
lows developers to define which sections of code are stati-
cally typed and which are dynamically typed, at a very fine
level of granularity, by selectively placing type annotations
where desired. The type system ensures that untyped code
does not violate the assumptions made in statically-typed
code. This makes it possible to choose between the flexi-
bility of dynamic typing and the reliability of static typing.

The semantics and implementation of a gradually-typed
language typically proceed by translation to an intermedi-
ate language with casts, i.e. runtime type checks that control
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the boundaries between typed and untyped code. Casts are
key to realizing the flexibility of gradual typing. However,
these casts impact programs on two fronts: reliability and
efficiency. First, reliability is affected because casts may fail
at runtime. In particular, when higher-order values cross the
typed/untyped boundary, runtime checks may be delayed,
and may eventually fail within the context of typed code. Ef-
fectively, this means that the boundaries between typed and
untyped code are dynamic, and hence hard to reason about
and predict, especially when integrating components from
different parties. Second, efficiency can be compromised if
higher-order casts are executed repeatedly.

While the flexibility provided by gradual typing is cer-
tainly a strong asset, reliability and efficiency are not to be
taken lightly. The problem is that existing gradually-typed
languages allow any value to cross the typed/untyped bound-
aries. As a result, the programmer has no direct control
over which values may be passed across boundaries, mak-
ing it hard to predict the resulting behavior. For instance,
missing type annotations and untyped third-party library can
have unexpected consequences. Of course, programming in
a gradually-typed language means embracing the possibility
of runtime errors. But it is not necessary to give up the pos-
sibility of ensuring that certain typed components never go
into the wild, or at least do so in a controlled manner.

To address this, we develop an extension of gradual typ-
ing that adds another axis of control, so that programmers
can explicitly adjust the tradeoff between flexibility and pre-
dictability. Confined Gradual Typing (CGT) refines a grad-
ual type system with type qualifiers that restrict the flow of
values between the typed and untyped parts of a program.
We develop two variants of CGT: i) a strict variant that pro-
vides strong reliability and efficiency guarantees at the ex-
pense of some rigidity; ii) a relaxed variant that defers some
checking to runtime, but still preserves interesting guaran-
tees. We develop both the theory and practice of Confined
Gradual Typing, using Gradualtalk [1] as a practical testbed.

This paper is structured as follows: Section 2 introduces
the necessary background on gradual typing, illustrates the
issues associated with the implicitness of gradual typing,



and informally describes Confined Gradual Typing in its two
variants. Sections 3 and 4 formalize Strict Confined Grad-
ual Typing and Relaxed Confined Gradual Typing respec-
tively, establishing the key properties of each approach. Sec-
tion 5 briefly describes the implementation of both variants
in Gradualtalk. Section 6 reports on performance measure-
ments of CGT in Gradualtalk, highlighting the incurred cost
of higher-order casts. Section 7 reviews related work, and
Section 8 concludes.

Most proofs associated with the formalization are in-
cluded in appendices; the complete version of all proofs can
be found in the companion technical report [3]. The imple-
mentation and benchmark code are available online.1

2. Motivation
In this section we first give an overview of gradual typing.
We then present two concrete examples that motivate the
need to control the reliability and efficiency impact of grad-
ual typing. We end this section by informally introducing
Confined Gradual Typing.

2.1 Gradual Typing in a Nutshell
Gradual typing [19, 20] allows the smooth integration of
static and dynamic typing by swapping the conservative pes-
simism of a static type system (i.e. reject all programs that
may go wrong) for a healthy dose of optimism (i.e. accept
all programs that may go right).

Suppose an untyped function id, and two variables x1
and x2, statically typed as String. The programmer can

reasonably expect x2 = id x1 to work fine, but this is just
a belief; id might return any value it wants, not necessarily
a String. The gradual type system statically accepts that
expectation, because the unknown type, denoted Dyn, is
consistent [19] with any type. The consistency relation is the
key for gradual typing to statically rule out programs that
will clearly go wrong while being otherwise optimistic.

But the optimism of the gradual type system is no blind
faith: at runtime, a check is performed to ensure that the
value returned by id is indeed a String, so that the static as-
sumption that x2 is of type String is not violated. Internally,
the above program is rewritten to an intermediate represen-
tation in which casts are inserted:

x2 = <String ⇐ Dyn> id (<Dyn ⇐ String> x1)

The first cast from String to Dyn serves no purpose in a
language whose runtime is based on tagged values. In a
language with untagged values, it tags the value referred to
by x1 with its type, String. When id returns, the value is cast
from Dyn to String. This cast fails if id does not return a
String value.

Higher-order casts. Higher-order casts are much more
subtle. Consider a variation of the above example, in which

1 http://pleiad.cl/gradualtalk/cgt

x1 is typed as String → String and x2 has type X. The inter-
mediate representation with casts is now as follows:
x2 = <X ⇐ Dyn> id (<Dyn ⇐ String → String> x1)

If X is not a function type, and assuming id is the identity
function, then a cast error is raised at runtime. If X is a
function type, say A → B, then we need to know if it makes
sense to treat a String → String function as a function of
type A → B. This depends on whether the two function
types are consistent with one another.

If they are inconsistent, e.g. X=Int→Int, a cast error
is raised immediately. If they are consistent, however, we
need to ensure that the untyped function (the result of the
application of id) properly behaves as an A → B function.
This is not decidable in general, so the runtime system must
generate a function wrapper: a function of the expected type
that internally inserts casts to the arguments and returned
value of the underlying function.

To illustrate, let us call v the underlying function bound
to x1. If id is the identity, it returns the tagged value
<Dyn ⇐ String→String>v. The function wrapper is hence
a new function of type A → B that internally applies v, with
corresponding casts applied to the argument and result:
x2 = λ x: A. <B ⇐ String>(v <String ⇐ A>x)

Note that if A=B=String, then the corresponding wrapper
would always succeed trivially. Therefore the wrapper can
be avoided altogether, in which case x2 gets bound to v
without any intervening wrapper. On the other hand, if

the function cast is consistent but not equal, for instance
X=Dyn→String, then the wrapper is needed to cast the
argument x from Dyn to String.

For the purpose of this work, it is crucial to highlight
the difference between a function value crossing the typed-
untyped boundaries, and a function value being wrapped: a
wrapper is not necessarily created as a result of boundary
crossing. As it turns out, function wrappers are the source of
several issues, both in terms of reliability and efficiency, as
illustrated below.

2.2 Gradualtalk in a Nutshell
The examples below are formulated in Gradualtalk2, a
gradually-typed dialect of Smalltalk [1]. A brief introduc-
tion follows.

In Smalltalk, Number�to: stop do: aBlock denotes the
to:do: method of the Number class, which takes two param-
eters: stop and aBlock. Local variables are declared between
pipe characters at the beginning of methods. Smalltalk clo-
sures, also called blocks, are defined in square brackets with
a pipe character separating the parameters from the body,
e.g., 2 to: 5 do: [ :i | i printOn: outputStream ]

In Gradualtalk, parameter and return types are optionally
specified by prefixing the parameter names and the method
name with a type in parentheses. For example:

2 http://pleiad.cl/gradualtalk



Number�(Self) to: (Number) stop do: (Number → ?) aBlock

The types of block parameters and local variables are
specified similarly. Self denotes the type of the receiver
and ? is the unknown type (missing type annotations are
interpreted as the unknown type). Note the use of function-
like syntax for block types, even though blocks are objects.
Gradualtalk supports nominal types, structural types (not
used in this paper), and generics, among others [1]. Type
variables are given using lowercase letters, e.g.
Collection<e> or (a → a).

2.3 Reliability
We now describe an example where the flexibility of gradual
typing produces a reliability issue that is hard to track down.

The application. Consider the construction of a large,
data-intensive application written in Gradualtalk. One team
is in charge of the statistics functionality. The Stats object
is responsible for running statistics on a subset of the data,
which it keeps as a typed instance variable data of type
GTCollection<Number>. The GTCollection generic class,
provided by Gradualtalk, is part of a new collection hier-
archy that is fully typed. Of interest here is the inject:into:
method—the Smalltalk equivalent of a left fold—whose type
signature is:

GTCollection<e> � (a) inject: (a)aVal into: (a e → a)aBlock

The block that computes the statistics is kept as an in-
stance variable of Stats. The accessors of this instance vari-
able are typed, e.g. as follows:

Stats � (Self) statBlock: (Integer Integer → Integer)aBlock
statBlock := aBlock

However, due to an oversight, the instance variable stat-
Block itself is left untyped (we do not show its declaration
here). Lastly, the following method runs the statistics:

Stats � (Integer) basicStats
ˆself data inject: 0 into: self statBlock

A separate development team is responsible for the user
interface. A UIStats class allows the user to choose which
statistic is calculated by using a dropbox widget.

UIStats � (Self) setStat: (Symbol)statName
self stats statBlock: (self statBlocks at: statName)

UIStats � (Self) getStats
self showStatResult: (self stats basicStats)

When the statistic to run is selected, the method setStat:
is called, setting the corresponding block in the Stats object.
To calculate the statistics, the user presses a button, which
invokes getStats and displays the result to the user.

The problem. The careful reader will have noticed that
the data collection is declared to contain Number objects,

while the statBlock: setter expects a function that manipu-
lates Integers. Because we are using a gradually-typed lan-
guage, this mismatch raises no static type error. Indeed, the
statBlock instance variable was left untyped, so when the
argument block is assigned, it silently crosses the boundary
to the untyped world. When the statistics block is used, in
the body of basicStats, the gradual type system implicitly
casts it back to the type Integer Number → Integer. As long
as the contents of the data collection of Stats are integers,
the implicit cast succeeds and goes unnoticed. For instance,
the UI team can test the application with a block of type
Integer Integer → Integer that sums all elements in data:

[:(Integer)sum :(Integer)next | sum + next]

However, suppose a floating point number occurs in the data
set. When the statistics are run, a cast exception is raised,
halting the application. The cause of the exception is that
the statistics collection block expects an integer argument,
but receives a float. While this certainly points to the fact
that there was a float in the dataset, it does not pinpoint the
source of the problem.3 The underlying problem is that the
statistics library was intended to be fully typed, yet an ac-
cidentally missing type annotation opened a reliability hole.
The UI team was hoping that passing a well-typed value (the
statistics block) to a typed library (the Stats object) would
never cause a runtime type error. Existing gradually-typed
languages do not support such a guarantee, because all val-
ues can implicitly cross to the untyped world.

2.4 Efficiency
We now turn to an example that describes the efficiency
impact of gradual typing.

The application. We consider a refinement of the above
example: the statistics are scheduled to run asynchronously
in a delayed manner, instead of running interactively. The
scheduling functionality is realized by an external Scheduler
library whose code is untyped. The code below shows how
a statistics run is scheduled:

Stats � (Self) scheduleBasicStatsIn: (Scheduler)scheduler when:
(Time)time

scheduler schedule: [:rcv :arg| rcv inject: 0 into: arg] on: self data
with: self statBlock when: time

The body of the method specifies that when it is time, the
scheduler should perform the fold operation specified in the
first argument on the collection given as a second argument.
This uses the same data and statistics block as before.

The problem. Surprisingly, the efficiency of the system is
greatly affected in this setting. The reason for this is that the

3 With first-order values, casts can always be evaluated fully at the bound-
aries, so the error messages are clear, and there is no need to use costly
wrappers. Also, blame tracking [9, 15, 26, 27] addresses traceability—by
reporting the source of a runtime cast error—not reliability—the absence of
runtime cast errors.



statistics block, which is typed, is passed to untyped code—
as an argument of the scheduler method—and back to typed
code—when the scheduler runs the job. Because there is a
mismatch between the original type and the target type, this
travel through untyped code forces the creation of a wrapper.
As a result, the wrapper code (which never fails if the data
only contains integers) is executed every time the block is
called. This produces a non-negligible overhead, especially
if the block is used frequently and its computational content
is brief. As we show in Section 6.1, a slowdown of up to 10x
is incurred. Worse still, because the slowdown is caused by
an external library (the scheduler) that is untyped, there is no
way to avoid this slowdown, apart from reimplementing or
typing the scheduler library.

Identifying the source of the slowdown is furthermore
not trivial, because cast insertion and wrapper creations are
implicit in gradual typing (Section 2.1). We were faced with
exactly this problem when performing benchmarks as part of
the validation of our work on cast insertion strategies [2], and
wished we had a way to predict and control where wrappers
are introduced.

2.5 Confined Gradual Typing
As we have seen, in a gradually-typed language the flex-
ibility provided by gradual typing can easily backfire and
compromise reliability and efficiency. To address this, we
propose Confined Gradual Typing as a means to control the
implicitness of gradual typing.

The issues presented in the previous sections boil down to
data flow issues: when higher-order values cross boundaries
between statically- and dynamically-typed portions of a pro-
gram, casts cannot be performed immediately, so wrappers
are needed. Wrappers are expensive, and delay the detection
of runtime type errors. In essence, Confined Gradual Typ-
ing refines a gradual type system with annotations that allow
programmers to explicitly prohibit certain boundary cross-
ings. This paper presents two flavors of CGT:

1. Strict Confined Gradual Typing (SCGT), which is re-
solved entirely statically, provides strong guarantees with
respect to reliability and performance, but can be too re-
strictive at times.

2. Relaxed Confined Gradual Typing (RCGT), which defers
some checks to runtime, is more flexible but has weaker
static reliability guarantees than SCGT.

In both versions, two type qualifiers are introduced: ↑ and ↓.
Intuitively, ↑ protects the future flow of a typed value, while
↓ constrains the past flow of a typed value. Their precise
meaning differs, however, between variants, as discussed
below.

2.5.1 Strict Confined Gradual Typing
In Strict Confined Gradual Typing, the ↑ qualifier, as in ↑T ,
expresses that an expression has type T and, once reduced to
a value, it cannot flow into the untyped world. This ensures

that a typed value is used in a fully typed context and hence
immune to cast errors (Section 2.3).4

For instance, if the statistics block from the UI team is
typed as ↑(Integer Integer → Integer), assigning it to an un-
typed instance variable is a static type error. More precisely,
it cannot be passed as argument to the statBlock: method of
the Stats object, unless that method also qualifies the type of
the argument block with ↑. If that is the case, then the assign-
ment in the body of statBlock: is a static type error, pointing
to the source of the issue—the untyped instance variable.

The ↓ qualifier, as in ↓T , expresses that an expression is
of type T and that its value has never flowed through the
dynamic world. For a higher-order value, this ensures that
the value is not wrapped, thereby avoiding performance is-
sues (Section 2.4). For instance, the developer of the typed
collection library can provide a second fold operation in-
ject:intoSafe: where the argument block is typed with ↓:
GTCollection<e> �(a)inject: (a)aVal intoSafe: ↓(a e → a)aBlock

This means that aBlock should have never passed through
dynamically typed code. If in the scheduler code of Sec-
tion 2.4 this operation is called instead of the more per-
missively typed inject:into:, then the message send in-
ject:intoSafe: is ill-typed. This is because the block passed
through the dynamic world and hence is potentially wrapped.

2.5.2 Relaxed Confined Gradual Typing
Strict Confined Gradual Typing is effective in restoring pre-
dictability, but can be limiting in practice, because it sys-
tematically prohibits interaction with untyped code. Relaxed
Confined Gradual Typing is a softer variant that trades the
fully static guarantees of SCGT for more flexibility, while
preserving interesting reliability and efficiency guarantees.
Instead of focusing on whether values have flowed or will
flow through untyped code, RCGT focuses on whether val-
ues have been wrapped or may be wrapped in the future.

In RCGT, the ↑ qualifier, as in ↑T , expresses the con-
straint that the (higher-order) value of type T will not be
wrapped. The ↓ qualifier, in turn, expresses that a (higher-
order) value has not been wrapped. RCGT statically allows
qualified values to pass through untyped code, but finds
a fault at runtime if wrappers are introduced. To support
RCGT, the runtime system must therefore be able to rec-
ognize when a typed value is passed to untyped code and
then projected out to the same type (or a supertype), hence
avoiding wrapping.

In the scheduler example, this means that a block typed
↓(Integer Integer → Integer) can be passed to the untyped
scheduler and then passed to the typed collection method
inject:intoSafe:, because no wrapping is necessary—hence
performance is unaffected. However, if the block was ex-
pected to have a different return type, wrapping would be

4 Of course, a programmer could explicitly wrap the function to get a dy-
namic version, but then that is a conscious and manifestly visible decision.



necessary, and a runtime error would be raised to prevent the
implicit creation of the wrapper.

To further illustrate the difference between SCGT and
RCGT, consider a typed function f of type F, the dynamically-
typed identity function id of type Dyn → Dyn, and the fol-
lowing program, statically legal in both SCGT and RCGT:

x: F' = id f

If we protect f with the ↑ qualifier, id f does not type check
anymore in SCGT, effectively protecting f from crossing the
typed/untyped boundary. On the other hand, the program
does type check in RCGT: f is allowed to flow into the
untyped world, as long as no wrapper is created when it
flows back to the typed world. So at runtime, if F' is not the
same as the declared type of f, an error is raised to prevent
the illegal wrapper creation.

Compared to SCGT, RCGT is more permissive and ac-
cepts more programs. With respect to guarantees, RCGT in-
troduces a new kind of runtime errors that denote unwanted
wrapper creations. Arguably, this still improves reliability
compared to standard gradual typing because wrapper cre-
ations are avoided and hence there are no delayed cast er-
rors latent in wrappers. Put differently, these errors are raised
more eagerly than in gradual typing. In the above example,
if no illegal wrapper exception was raised, it means x is un-
wrapped and as such cannot be the cause of future cast er-
rors. On the efficiency side, RCGT makes it possible to pre-
dict and control the implicit overhead of wrappers.

2.6 Usage Scenarios of Confined Gradual Typing
The flow qualifiers introduced by Confined Gradual Typing
can be helpful to programmers following different possible
methodologies. We envision three such approaches:

post-hoc. The programmer uses gradual typing without
qualifiers and, when facing either a reliability or effi-
ciency issue, she introduces qualifiers to track down the
sources of these issues. Note that, compared to a debug-
ging tool, this approach has the advantage that once the
source of the problem is identified, the programmer can
leave the qualifiers in place, thereby ensuring that the
issue will not reappear later. The programmer can also
build on the experience to introduce preventive qualifiers
in other places where similar issues could appear.

upfront/provider. When developing a library that has criti-
cal components (either performance- or reliability-wise),
the programmer eagerly adds qualifiers in the interface to
make clear that the intention is to get static/unwrapped
arguments, hinting at the fact that these qualified argu-
ments play key roles in the overall behavior of the library.
Performance-wise, examples include event callbacks in
GUI components, like mouse-over or repaint, which can
be called intensively. Reliability-wise, examples include
error logging and exception handling code, where one
wants to avoid cast errors that eclipse the underlying er-

ror, or essential system components, for instance the im-
plementation of the gradual type checker itself.

upfront/client. A programmer develops an application that
imports a fully statically-typed library, which is used in a
critical manner (either performance- or reliability-wise).
The programmer can defensively use qualifiers on all the
callbacks of the application to make sure they do not
accidentally cross the static/dynamic boundary and then
flow in the imported library, compromising performance
or reliability. The programmer only removes qualifiers if
a specific boundary crossing is deemed harmless.

Note that the last usage scenario suggests a language design,
dual to the one we formulate in this paper, in which the lan-
guage is by default fully statically typed, and programmers
have to explicitly introduce qualifiers that allow the intro-
duction of dynamic checking and boundary crossing.

3. Strict Confined Gradual Typing
To make the description of Confined Gradual Typing precise,
we now formalize CGT, starting with the strict variant (Sec-
tion 2.5.1). We defer the presentation of the relaxed variant
(Section 2.5.2) to Section 4.

To ensure that CGT can be understood and applied re-
gardless of the considered host language, this formalization
is independent of Smalltalk, and follows the approach of
Siek and Taha [19], which builds upon the simply-typed
lambda-calculus. We respect the pay-as-you-go motto of
gradual typing, in that the runtime semantics of the language
does not assume tagged values: casts to the unknown type
are used to maintain source type information of untyped val-
ues only when required.5

The semantics of the source language is given by a type-
directed translation to an internal language that makes run-
time checks explicit by inserting casts. The syntax and static
semantics of the source language is described in Section 3.1.
Section 3.2 presents the internal language, and the transla-
tion is explained in Section 3.3.

3.1 Source Language
Syntax. We start with a lambda-calculus with base types
B (for simplicity we support numbers and addition), the
unknown type Dyn, and the type qualifiers ↑ and ↓ of CGT
(Figure 1).

Subtyping. The ↑ and ↓ qualifiers induce a natural subtyp-
ing relation between types (Figure 2). Since ↓ is a guaran-
tee about the past of a value, it is possible to lose it (SS-
losedown), but not to gain it. Conversely, one can see a value
of type T as a ↑T (SS-gainup), because this adds a guarantee
about the future usage of the value; ↑ cannot be lost. Also,

5 The impact of using a host language whose runtime uses tagged values,
as in any safe dynamically-typed language like Smalltalk, is discussed in
Section 5.



(SS-reflex)
T <: T

(SS-trans)
T1 <: T2 T2 <: T3

T1 <: T3
(SS-fun)

T3 <: T1 T2 <: T4
T1 → T2 <: T3 → T4

(SS-losedown) ↓T <: T
(SS-gainup)

T <: ↑T (SS-up)
T1 <: T2
↑T1 <: ↑T2

(SS-down)
T1 <: T2
↓T1 <: ↓T2

Figure 2. SCGT: Static subtyping

(DC-rdyn)
B ; Dyn

(DC-ldyn)
Dyn ; B

(DC-dynfun1)
T1 → T2 ; Dyn→ Dyn

T1 → T2 ; Dyn
(DC-dynfun2)

Dyn→ Dyn ; T1 → T2
Dyn ; T1 → T2

(DC-fun)
T3 ; T1 T2 ; T4
T1 → T2 ; T3 → T4

(DC-losedown)
T1 ; T2
↓T1 ; T2

(DC-gainup)
T1 ; T2
T1 ; ↑T2

(DC-sub)
T1 <: T2
T1 ; T2

Figure 3. SCGT: Directed consistency

e ::= n | λx : T.e | e e | e+ e Expressions
P ::= B | Dyn Primitive Type
T ::= P | T → T | ↑T | ↓T Type

Note that we consider T up to the following equations:
↑↑T = ↑T ↓↓T = ↓T ↑↓T = ↓↑T

↑Dyn = ↓Dyn = Dyn

Figure 1. SCGT: Source language syntax

subtyping propagates below qualifiers (SS-up, SS-down).
The other rules are standard.

Directed consistency. The essence of gradual typing lies in
the consistency relation [19], which expresses the compati-
bility between typed and untyped expressions. Every base
type is consistent with Dyn, and function types are consistent
if their constituents are consistent. Consistency is typically
symmetric and never transitive, otherwise any type would be
consistent with any type through consistency with Dyn.

Because Confined Gradual Typing expresses constraints
on the flow of values with respect to the unknown type,
we introduce a non-symmetric variant of consistency, called
directed consistency (Figure 3). Like consistency, directed
consistency is reflexive and non-transitive. The loss of sym-
metry is due to the qualifiers ↑ and ↓; when not present, the
relation is symmetric. Unqualified base types are consistent
with Dyn and vice versa (DC-rdyn, DC-ldyn). Unqualified
function types can only be consistent with Dyn, and vice-
versa, if the type is consistent with Dyn → Dyn, and vice
versa (DC-dynfun1, DC-dynfun2). Note that these last rules
are new as such in the consistency relation of a gradually-
typed language; they reflect a restriction needed to preserve
the guarantees of qualifiers. The non-symmetry of the re-
lation is used to guarantee that a ↓T value has never passed
through Dyn (DC-losedown), and that a ↑ T value will never

pass to Dyn (DC-gainup), but not the reverse. Finally, di-
rected consistency subsumes subtyping (DC-sub). This im-
plies that ↓T ; ↑T , for every type T .

Typing. Equipped with directed consistency, we can now
describe the typing rules of SCGT (Figure 4). Literal values
are typed with the ↓ qualifier to express that they have not
(yet) passed through Dyn. (T-var) is standard.

(T-app1) corresponds to the case where the function ex-
pression is of the unknown type. In contrast to standard grad-
ual typing [19], it is not sufficient for e2 to be well-typed: it
must also be consistent with Dyn. This may not be the case
in CGT, as ↑T ; Dyn never holds.

If the function expression is typed, then it ought to be a
function type (T-app2). The type of the argument expression
must be consistent with the argument type of the function.
Since we do not care whether the function type is qualified,
the rule uses an auxiliary operator |·| to remove qualifiers:

|↑T | = |T |
|↓T | = |T |
|T | = T otherwise

Finally, for addition, the sub-expressions must be consis-
tent with Int (T-add). We write ↑Int because addition con-
sumes the number without any further casts. The newly-
produced number is qualified with ↓.

3.2 Internal Language
Syntax. Figure 7 presents the syntax of the internal lan-
guage, which extends the source language syntax with casts
〈T ⇐ T ′〉 and runtime cast errors. A value v can be either a
base value b or a tagged value 〈Dyn⇐ T 〉b (with T 6= Dyn).
A tagged value is a value (born typed) that was passed to
Dyn. The cast to Dyn plays the role of a type tag, keeping
the information that the underlying value is of type T. A base
value is either a number or a function value, which is either



(T-num)
Γ ` n : ↓Int

(T-abs)
Γ, x : T1 ` e : T2

Γ ` λx : T1.e : ↓(T1 → T2)
(T-var)

Γ(x) = T

Γ ` x : T

(T-app1)
Γ ` e1 : Dyn Γ ` e2 : T2 T2 ; Dyn

Γ ` e1 e2 : Dyn

(T-app2)
Γ ` e1 : T1 Γ ` e2 : T2 |T1| = T11 → T12 T2 ; T11

Γ ` e1 e2 : T12

(T-add)
Γ ` e1 : T1 Γ ` e2 : T2 T1 ; ↑Int T2 ; ↑Int

Γ ` e1 + e2 : ↓Int

Figure 4. SCGT: Typing

(IT-num)
Γ ` n : ↓Int

(IT-var)
Γ(x) = T

Γ ` x : T
(IT-abs)

Γ, x : T1 ` e : T2
Γ ` λx : T1.e : ↓(T1 → T2)

(IT-err)
Γ ` CastError : T

(IT-app)
Γ ` e1 : T1 Γ ` e2 : T2 |T1| = T11 → T12 T2 <: T12

Γ ` e1 e2 : T12

(IT-add)
Γ ` e1 : T1 Γ ` e2 : T2 T1 <: ↑Int T2 <: ↑Int

Γ ` e1 + e2 : ↓Int
(IT-cast)

Γ ` e : T1 T1 <: T2 T2 ; T3
Γ ` 〈T3 ⇐ T2〉e : T3

Figure 5. SCGT: Internal language typing

(E-congr) e −→ e′

E[e] −→ E[e′]
(E-app)

(λx : T .e) v −→ e[v/x]
(E-add)

n3 = n1 + n2
n1 + n2 −→ n3

(E-merge)
T1 ; T2 T1 6= Dyn

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ 〈T2 ⇐ |T1|〉v
(E-merge-err)

T1 6; T2
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ CastError

(E-err)
E[CastError] −→ CastError

(E-remove)
T1 <: T2

〈T2 ⇐ T1〉 v −→ v

(E-fcastinv)
|F | = T1 → T2 |F ′| = T ′1 → T ′2 F ; F ′ F 6<: F ′

(〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

Figure 6. SCGT: Internal language dynamic semantics

e ::= . . . | 〈T ⇐ T 〉 e | CastError Expressions
f ::= λx : T.e Function values

| 〈F ⇐ F ′〉f if F ′ 6<: F
b ::= n | f Base values
v ::= b | 〈Dyn⇐ T 〉b if T 6= Dyn Values
F ::= T → T | ↓F | ↑F Function type
E ::= � e | v � | � + e | v + � Evaluation Frames

| 〈T ⇐ T 〉 �

Figure 7. SCGT: Internal language syntax

a plain function, or a function wrapper 〈F ⇐ F ′〉f . Func-
tion wrappers are interesting because they embed higher-

order casts, which are the source of the problems that CGT
addresses. The syntactic category F is specific to function
types. Note that we require F ′ 6<: F for 〈F ⇐ F ′〉f to
be considered a value, because otherwise the cast is elim-
inated by reduction (and the wrapper avoided). Evaluation
frames E are expressions with holes, and are single-frame
analogues to evaluation contexts from reduction semantics.

Typing. The typing rules of the internal language are
straightforward (Figure 5). Most instances of directed con-
sistency from the source language are replaced with static
subtyping. This is because necessary instances of consis-
tency in the source language translate to casts in the inter-
mediate language, as described below (Section 3.3). The
new rule (IT-cast) expresses that a cast is valid only if the



(C-num)
Γ ` n⇒ n : ↓Int

(C-var)
Γ(x) = T

Γ ` x⇒ x : T
(C-abs)

Γ, x : T1 ` e⇒ e′ : T2
Γ ` λx : T1.e⇒ λx : T1.e

′ : ↓(T1 → T2)

(C-app1)
Γ ` e1 ⇒ e′1 : Dyn Γ ` e2 ⇒ e′2 : T2 T2 ; Dyn

Γ ` e1 e2 ⇒ (〈(T2 → Dyn)⇐ Dyn〉e′1)e′2 : Dyn

(C-app2)
Γ ` e1 ⇒ e′1 : T1 Γ ` e2 ⇒ e′2 : T2 |T1| = T11 → T12 T2 ; T11

Γ ` e1 e2 ⇒ e′1(〈〈T11 ⇐ T2〉〉e′2) : T12

(C-add)
Γ ` e1 ⇒ e′1 : T1 Γ ` e2 ⇒ e′2 : T2 T1 ; ↑Int T2 ; ↑Int

Γ ` e1 + e2 ⇒ (〈〈↑Int⇐ T1〉〉e′1) + (〈〈↑Int⇐ T2〉〉e′2) : ↓Int

Figure 8. SCGT: Cast insertion

source type T2 is a supertype of the actual type T1, and is
consistent with the target type T3.

Dynamic semantics. The evaluation rules of the internal
language are also standard, except for a few key points. Rule
(E-merge) compresses two successive casts that go through
Dyn if the source type T1 is compatible with the outer target
type T2. Note that in doing so, it strips qualifiers from T1 to
reflect that the value has gone through Dyn. If T1 is not com-
patible with T2, a runtime CastError is raised (E-merge-err).
Cast errors propagate outward (E-err). (E-fcastinv) describes
the application of a function wrapper to a value. Regardless
of the qualifiers of F and F ′, it decomposes to cast the argu-
ment and result of the application.

3.3 Translating Source Programs to the Internal
Language

A source language program is translated to an internal lan-
guage program through cast insertion (Figure 8). Each typ-
ing rule of the source language (Figure 4) has a correspond-
ing cast insertion rule. Whenever directed consistency is
needed, the output program uses explicit casts to express the
corresponding runtime checks.

We use the 〈〈·〉〉 operator to introduce casts only when
necessary (i.e. when directed consistency holds but static
subtyping does not):

〈〈T2 ⇐ T1〉〉e =

{
e if T1 <: T2,

〈T2 ⇐ T1〉e otherwise.

When the operator expression of an application has un-
known type, it is cast to a function that accepts the argument
type (C-app1). The side condition T2 ; Dyn ensures that
it can use an argument of type T2 (in order to respect the
↑ qualifier). In case the function expression is typed, a cast
may be inserted for the argument expression (C-app2). (C-
add) is similar.

3.4 Type Safety and Correctness of Qualifiers
Type safety of the internal language is established in a stan-
dard manner via progress and preservation:

Theorem 1. (Progress) If ∅ ` e : T , then e is a value, or
e = CastError or ∃e′, e −→ e′.

Proof. By induction on the typing rules for e (Appendix A).

Theorem 2. (Preservation) If ∅ ` e : T and e −→ e′, then
∅ ` e′ : T ′ and T ′ <: T .

Proof. By induction on the evaluation rules (Appendix A).

Also, the cast insertion translation preserves typing:

Theorem 3. (Cast insertion preserves typing)
If Γ ` e⇒ e′ : T in the source language, then Γ ` e′ : T in
the internal language.

Proof. By induction on the cast insertion rules (Appendix B).

However, type safety is just a safety net that does not
express the essence of the guarantees that the qualifiers ↑
and ↓ are supposed to bring. We really want to prove that the
↑ qualifier ensures that a value will not pass through the Dyn
type, and conversely that the ↓ qualifier ensures that a value
has not passed through the Dyn type.

The proof technique we use consists of formulating a
variant of the semantics of SCGT where values are marked.6

A value is tainted, denoted v•, if it has passed through
Dyn, otherwise it is untainted, denoted v◦. A value can
additionally be marked as untaintable, denoted v̂. Intuitively,
values are born untainted, and are tainted whenever a pair
of casts through Dyn is merged (as in rule E-merge). A
value is marked untaintable when it is passed as parameter
of a function whose argument type has the ↑ qualifier, or
when it is cast to an ↑-qualified type. The full static and
dynamic semantics of the taint-tracking language are given
in Appendix C.

6 The idea of using additional syntax to track the flow of values and be able
to use syntactic proofs was inspired by Syntactic Type Abstraction [11].



Once we establish type safety for the taint-tracking se-
mantics, the main theorems are the following:

Theorem 4. (↓ correctness) If ∅ ` v : ↓T , then v = v◦.

That is, a value of type ↓T is necessarily untainted.

Theorem 5. (↑ correctness) If ∅ ` 〈Dyn ⇐ T 〉 v : Dyn,
then v 6= v̂.

That is, a tagged value cannot be untaintable. Together
with a lemma that establishes that an untaintable value must
have an ↑-qualified type (Appendix C), this expresses that
the stated guarantee of ↑ is correctly maintained by the
semantics.

Proof. Both theorems directly follow from the Canonical
Forms lemma of the taint-tracking semantics (Appendix C).

Finally, we establish that the taint-tracking semantics is
faithful to the semantics presented in this section by defining
a taint erasure function erase(e) that takes a term e of the
taint-tracking language to a term of the original language by
removing the taint, and proving the following result:

Theorem 6. (Tainting faithfulness)
If e −→ e′, then erase(e) −→ erase(e′).

Proof. By induction on the evaluation rules of the taint-
tracking semantics (Appendix C).

4. Relaxed Confined Gradual Typing
We now present a variant of Confined Gradual Typing that is
more flexible than SCGT. Relaxed Confined Gradual Typing
guarantees that costly function wrappers are not created un-
wantedly. In RCGT, the ↓ qualifier indicates that a function
value has not been wrapped, although it may have crossed
the typed/untyped boundaries. Similarly, the ↑ qualifier im-
poses that a function value will not be wrapped, although it
is allowed to cross typed/untyped boundaries.

The overall semantic framework for RCGT is similar to
that of SCGT: the source language syntax is the same, but its
semantics reinterpret the meaning of the type qualifiers and
loosens the constraints on directed consistency (Section 4.1).
Its semantics is given by translation (unchanged) to an inter-
nal language with casts, for which only one evaluation rule
is different (Section 4.2). The metatheory is fairly different
(Section 4.3) however, because the guarantees implied by
the qualifiers are different: ↑ and ↓ do not express guaran-
tees about passing through the Dyn type, but instead express
guarantees about function wrappers.

In RCGT, the ↑ and ↓ qualifiers are meaningless for base
types, since they are not subject to function wrappers, so
we impose an additional equation on the syntax of types
(Figure 1): ↑P = ↓P = P

(DC-rdyn-R)
T ; Dyn

(DC-ldyn-R)
Dyn ; T

Figure 9. RCGT: Modified directed consistency. Rules
(DC-dynfun1, DC-dynfun2) are removed, all other rules are
preserved.

4.1 Directed Consistency, Revisited
In SCGT, directed consistency plays two roles: first, it en-
sures that the ↓ qualifier cannot be forged, and that the ↑
qualifier cannot be lost; second, it prevents certain types
from being consistent with the unknown type Dyn and vice
versa. In RCGT, directed consistency is more permissive
(Figure 9): only the first role is preserved; any type is consis-
tent with Dyn (DC-rdyn-R, DC-ldyn-R). As a result, RCGT
statically rejects fewer programs.

4.2 Dynamic Semantics, Revisited
All the evaluation rules of the internal language are pre-
served as is, except for (E-merge), which is replaced by (E-
merge-R), shown in Figure 10. The only difference is that
the qualifiers of the source type are not removed, because
in RCGT, going through Dyn is irrelevant; what matters are
function wrappers.

(E-merge-R)
T1 ; T2

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ 〈T2 ⇐ T1〉v

Figure 10. RCGT: Modified dynamic semantics. All other
rules are preserved.

While the rules are very similar, their behavior is quite
different. In particular, there are new instances of (E-merge-
err) that amount to runtime checking that wrappers do not
get created.

For instance consider a typed function f : F , the
dynamically-typed identity function, id = λx.x : Dyn →
Dyn, and the program let x : F ′ = id f (we assume F and
F ′ are unqualified types). The program is statically legal in
both SCGT and RCGT.

Now consider that we protect f with the ↑ qualifier:
f : ↑F . In SCGT id f does not type check anymore, because
↑F 6; Dyn. This effectively protects f from crossing the
typed/untyped boundary. On the other hand, the program
does type check in RCGT: f is allowed to flow into the
untyped world, as long as no wrapper is created when it
flows back to the typed world. At runtime, when id returns
and the value is about to be assigned to x, the composed
cast 〈F ′ ⇐ Dyn〉〈Dyn ⇐ ↑F 〉f is produced. By definition,
↑F 6; F ′—the ↑ qualifier cannot be lost. So (E-merge-
err) applies, resulting in a CastError that manifests that the
wrapper creation is illegal.



4.3 Type Safety and Correctness of Qualifiers
Progress and preservation also hold for Relaxed Confined
Gradual Typing; similarly, cast insertion preserves typing
(Appendix D). Again, the most interesting result is not type
safety, but a notion of correctness for the ↑ and ↓ qualifiers.
In RCGT, the qualifiers provide guarantees with respect to
function wrappers. Both can be expressed in the following
theorem, which states that no function wrapper has an ↑-
qualified type as source type or a ↓-qualified type as target
type:

Theorem 7. (No wrapping with qualifiers)
If e = 〈F2 ⇐ F1〉 f is a value, then F1 6= ↑F ′1 and
F2 6= ↓F ′2

Proof. We first prove two lemmas that relate directed consis-
tency from/to qualified types with static subtyping, namely:
T1 ; ↓T2 ⇒ T1 <: ↓T2 and ↑T1 ; T2 ⇒ ↑T1 <: T2.
Then, the proof proceeds by contradiction, exploiting the
definition of a wrapper value, i.e. T1 6<: T2 (Appendix E).

5. Implementation
We have implemented both variants of Confined Gradual
Typing, SCGT and RCGT, as an extension of Gradualtalk [1],
a gradually-typed dialect of Smalltalk. The implementation
can be configured to operate in one of three modes: original
gradual typing (GT hereafter), SCGT and RCGT. This sec-
tion briefly describes how to go from the theory of Confined
Gradual Typing to its implementation in Gradualtalk.

5.1 From Theory to Practice
Objects. One of the biggest differences between the for-
mal presentation of Confined Gradual Typing and the ac-
tual implementation is that Gradualtalk is an object-oriented
language, with subtyping. Gradualtalk is built on consistent
subtyping [20], a relation that combines consistency with
traditional object subtyping. We first extend subtyping in
Gradualtalk to include the subtyping rules for qualifiers (Fig-
ure 2). Second, we make the consistent subtyping relation
directed (Figure 3). Third, because Smalltalk provides many
primitive operations, we require that the arguments to the
primitives be consistent subtypes of ↑T instead of T (similar
to the case of addition in the theory).

Casts to Dyn and type safety. Following seminal work on
gradual typing, the formalization of CGT assumes an unsafe
runtime system and relies on casts to Dyn to tag values
only when necessary. Because Smalltalk is a safe dynamic
language, its runtime already maintains a type tag for each
value. In implementing CGT in Gradualtalk, therefore, we
do not need to re-tag all values: we can discharge casts from
their safety-bearing role. The only exception is closures,
because we must keep track of the semantics of qualifiers,
as discussed below in Section 5.2.

Type system features. Gradualtalk supports several type
system features beyond nominal and function types, e.g. struc-
tural types and union types. As of now, the implementation
of SCGT and RCGT only supports nominal and function
types. Studying and implementing the semantics of quali-
fiers for the other features is future work.

Live system. Nearly every Smalltalk environment is a live
system: the developer writes the code, runs it and debugs it
all in the same execution environment. To support this live
environment, class definitions can change at runtime, and in-
dividual methods can be added to and removed from an ex-
isting class. Gradualtalk already deals with this incremental
and dynamic setting [1], and CGT does not introduce new
challenges in this regard.

5.2 Confined Gradual Typing in Gradualtalk
In both SCGT and RCGT all syntactically created values
automatically have ↓ as part of their type. Furthermore the
subtype rules SS-gainup, SS-losedown, SS-up, and SS-down
(Figure 2) establish how ↓ and ↑ are passed along, produced
and consumed, and guarantee that ↓ cannot be forged and ↑
cannot be lost. In contrast, the default gradual typing seman-
tics (GT) simply ignores qualifiers. SCGT has the exact same
runtime as GT: only the compile-time type checker differs,
raising errors related to misused qualifiers. RCGT has differ-
ent static and dynamic semantics from GT. Its type checker
is less strict than that of SCGT, and its runtime semantics
differ from both GT and SCGT, because function casts and
the type tags of closures are managed differently. We now
briefly expand on the differences in RCGT.

Tagged closures. A tagged closure is an extended Smalltalk
closure that contain an extra type tag. The tag is used to mark
the closure with its source type when it is cast to Dyn, and
to mark when it acquires the ↑ property (i.e. it cannot be
wrapped). Tagged closures are instances of a subclass of the
class of all blocks, BlockClosure. To tag an existing closure,
a new tagged closure is created and all the instance variables
of the original block are copied, along with the source type
when casting to Dyn, or the target type when casting to an
↑-qualified type.7

Function casts. To avoid repeating subtype tests, the im-
plementation of function casts in Gradualtalk is a union of
the E-remove, E-merge-R and E-merge-err rules (Figures 6
and 10):

1. If ↑ is present in the source type but not the target type a
cast error is raised.

2. If the source type is not a subtype of the target type:

(a) Throw a cast error if the source type has a ↑.
(b) Throw a cast error if the target type has a ↓.

7 Just like the implementation of function wrappers, this implementation is
vulnerable to reflective operations.



(c) Wrap the closure object.

(d) If the target type has an ↑, produce a tagged closure.

3. If the source type is a subtype of the target type:

(a) If the target type has an ↑, produce a tagged closure.

(b) Otherwise return the value unaltered.

6. Performance Evaluation
An important goal of Relaxed Confined Gradual Typing is to
obtain higher performance. This gain results from the ability
to avoid unwanted implicit wrapping of closures and con-
sequently avoid their overhead on closure application. This
of course supposes that wrappers have a noticeable over-
head. To validate this hypothesis, we have performed some
microbenchmarks and macrobenchmarks. The microbench-
marks establish the cost of boundary crossing from static to
dynamic and back and, more importantly, the cost of apply-
ing wrappers. The macrobenchmarks focus on the cost of ap-
plying wrappers and see if the observations on microbench-
marks scale up to a more realistic scenario.

Both microbenchmarks and macrobenchmarks were run
on a machine with an Intel Core i7 3.20 GHz CPU, 4 GB
RAM and 250 GB SATA drive, running Windows 7. The
VM used is Pharo.exe build number 14776 and base image
is Pharo 2.0 build number 20628.

6.1 Microbenchmarks
We report on microbenchmarks that evaluate the overhead of
function wrappers in Gradualtalk and the impact of RCGT
at runtime. The microbenchmarks reuse the setting from
Section 2. The first set of benchmarks determines the cost of
a closure crossing the boundary back into typed code, while
the second set determines the cost of applying wrappers. The
closure used is the simple statistics block from Section 2.3,
with type Integer Integer → Integer, used to perform a left
fold on a collection of Number values.

Multiple runs of the benchmarks have been performed,
with differing amounts of closure creation and application:
from 100,000 to one million, in increments of 100,000. For
each iteration count, we take the average of 10 runs. Here we
only include the detailed results for one millon iterations.
The detailed data shows that the observed relative perfor-
mance is similar on all iteration counts (Appendix F).

6.1.1 The Cost of Boundary Crossing
We evaluate the cost of boundary crossing by benchmarking
three variants of a small program that assigns a typed closure
to a typed variable, after going through an untyped variable.
The basic template is as follows:
|block|
block := [:(Integer)acc :(Integer)i|acc + i].
[ 1 to: self iterations do: [:i|
|(Integer Integer → Integer)tblock|
tblock := block.
tblock class. ”Cheap----prevents elimination of the loop body”

]] timeToRun.

The typed closure is first assigned to the untyped local
variable block. Then the benchmark loop is defined; it is
run and measured in the last line. The number of iterations
in the loop is determined in the fourth line. The iteration
body assigns block to a typed variable tblock, and then
performs a cheap operation on that variable (basically, an
instance variable access), which is necessary to prevent the
compiler from optimizing away the entire body of the loop.
The variants we consider are:

• Fully Typed: To establish a base line, we benchmark a
fully-typed version of the program, so that there is no
boundary crossing at all. This means that the block local
variable is typed as Integer Integer → Integer.

• No Wrapping: This variant is the one presented in the
code snippet above: the blocked is assigned to a typed
variable tblock of the same type as the source type of the
block; therefore, there is no need to create a wrapper.

• Wrapping: This variant changes the declaration of tblock
to be of type Number Number → Number. Because

this is not a subtype of the original type of the closure, a
wrapper is created.

Note that for Fully Typed and No Wrapping, we also
benchmark versions with an ↑ qualifier added at the cre-
ation of the block, or a ↓ qualifier on the type of tblock. This
allows us to examine the assumption that adding qualifiers
should not introduce a noticeable penalty. Of course, be-
cause type qualifiers prevent the creation of the wrapper, the
Wrapping variant cannot be tested with qualifiers—a run-
time error is raised when the wrapper is deemed necessary.

Results. Table 1 presents the results for the three variants.
In each case, we compare the original gradual typing imple-
mentation (GT) with RCGT. For one millon iterations, the
Fully Typed variant takes about 0.1 seconds in all scenari-
os. The No Wrapping variant takes about 11 seconds in GT,
and 14 seconds in RCGT. This amounts to around a 100X
slowdown compared to the Fully Typed variant, reflecting
the cost of performing the function cast and associated sub-
typing tests. Note that the use of the ↑ qualifier implies a
light 5% overhead, due to the tagging of the closure (Sec-
tion 5.2). The Wrapping variant takes about 13 seconds in
GT and about 17 seconds in RCGT. This means that wrap-
per creation induces about a 20% slowdown, which is still
negligible compared to the overhead of the casting logic.

RCGT turns out to be around 30% slower than GT, an ob-
servation that stands across all iteration counts (Figure 11).
This overhead is due to the extra logic needed for function
casts in RCGT compared to GT. We currently do not under-
stand the reason of the discontinuity in the graph between
500k and 700k iterations, which is present in the data of all
benchmarks.



Fully Typed No Wrapping Wrapping
GT 115 10800 12768
RCGT 120 13972 16721
RCGT with ↓ 123 13761 -
RCGT with ↑ 114 14412 -

Table 1. Execution time in milliseconds for one millon
boundary crossings back into typed code. RCGT is about
30% slower than GT.
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Figure 11. Running times for creating wrappers in GT and
RCGT. RCGT is systematically about 30% slower.

6.1.2 The Cost of Applying Wrappers
To evalute the cost of applying wrappers, we benchmark two
variants of a small program that repeatedly applies a block
over a collection, after making it cross the typed/untyped
boundary:

| block (Number Number → Number)tblock
(TypedCollection<Number>)col |
block := [:(Integer)acc :(Integer)i|acc + i].
tblock := block.
col := self getCollection.
[col inject: 0 into: tblock] timeToRun

The third and fourth line create the block and perform the
double boundary crossing. The fifth line obtains a collection
filled with repetitions of the number 1 that is used for the fold
operation. Its size hence determines the number of iterations
in the benchmark loop. The last line performs the fold and
measures the time.

The variants we consider are:

• No Wrapping: To establish a base line, this is the case
where the block is not wrapped. It is obtained by chang-
ing the declared types of tblock, col and acc to be over
Integer instead of Number.

• Wrapping: This is the variant in the above code snippet.
The block is wrapped when assigning it to tblock, due to
the mismatch of types.

Results. Table 2 reveals that, for 1 million iterations, ap-
plication of a wrapped closure suffers roughly a 10X slow-
down, both in GT as in RCGT. This relative overhead is pre-

No Wrapping Wrapping
GT 2246 25458
RCGT 2648 26359
RCGT with ↓ 2694 -
RCGT with ↑ 2660 -

Table 2. Execution time in milliseconds for one million ap-
plications of the closure. Wrapper evaluation implies about
a 10X slowdown.
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Figure 12. Running times for closure application when not
wrapped (GT-U, RCGT-U) and wrapped (GT-W, RCGT-W).
Wrappers always implies about a 10X slowdown.

served for all iteration counts (Figure 12). Also, the use of
type qualifiers in the No Wrapping variant does not affect
the performance of RCGT.

6.2 Macrobenchmark
To establish if the advantages of Relaxed Confined Grad-
ual Typing scale up to a more real-world setting, we have
performed a macrobenchmark using Spec [18]. Spec is the
standard UI framework for Pharo Smalltalk, the language in
which Gradualtalk is implemented. The focus of Spec is on
reuse and composition of existing UI components, from ba-
sic widgets to complete user interfaces.

Setup The external interface of the standard Spec wid-
gets essentially boils down to their configuration settings. In
these widgets, a wide variety of settings are set by provid-
ing a block closure, e.g. the action to perform when a button
is pushed, or how to obtain the string representation of an
object for a list view (known as its displayBlock). We have
typed the external interface of these widgets to allow type
errors, e.g. in the configuration blocks, to be caught at com-
pile time. This instead of, e.g. when a user clicks on a button
or a new item is added to the list and painted.

The macrobenchmark establishes the cost of using a
wrapped displayBlock, compared to when it is not. This is
done by showing a list of all 3620 classes present in the
Gradualtalk image and programmatically scrolling down the



Not Wrapped Wrapped
GT 1113 1573
RCGT 1123 1608

Table 3. Execution time in milliseconds for the mac-
robenchmark. Wrapping induces a 45% slowdown.

entire list as fast as possible. Scrolling is performed by pro-
grammatically selecting each item in the list in succession.
This scrolls the list down and whenever a new list item is
painted the displayBlock is executed. The slower the execu-
tion of the block, the longer it will take to scroll through the
entire list. The benchmark is run ten times and the average
time is taken. Complete code is available online.

Results The macrobenchmark has four different variants:
GT and RCGT, both with and without wrappers. The de-
tailed results are in Table 3. When the block is wrapped,
GT and RCGT take about 1.6 seconds, compared to 1.1 sec-
onds when the block is not wrapped. In both cases RCGT
is only 1-2% slower than GT. Overall, wrapping induces a
45% slowdown in scrolling speed, which is significant. Also,
in the context of the experiment, the difference is well above
the typical noticeable UI difference threshold of 0.2 seconds.

6.3 Summary
We have performed microbenchmarks that establish the cost
of crossing the boundary back into statically typed code, and
the cost of applying wrappers. We assessed both costs for GT
and RCGT. Considering the boundary crossing, we found
that RCGT is about 30% slower than GT, which is not sig-
nificant compared to the 100X slowdown imposed by the
casting logic in any case. More significant is that applying a
wrapped closure is 10 times slower than an unwrapped one.
The macrobenchmarks confirm that in a more real-life sce-
nario the overhead of wrapped closure remains significant
(45% for displaying a list widget). We conclude that avoid-
ing unwanted wrapper creation through the use of ↑ and ↓
type qualifiers can have valuable performance benefits.

7. Related Work
If a programming language is to combine typed and un-
typed code safely, some form of casting is unavoidable. Prior
work in this area has focused on decreasing the overhead
that casts introduce. The Typed Racket language [25] com-
bines static and dynamic code at a coarser granularity than
the gradual typing approach. A Typed Racket module is ei-
ther fully typed or fully untyped. This approach emphasizes
program designs with fewer interaction points between static
and dynamic code. The Confined Gradual Typing technique
restricts the dynamic flow of some typed values into untyped
code, regardless of how coarse or fine grained the borders
between the two. As such, we believe that this technique is

perfectly compatible with module-level approaches, and can
be used to extend their expressive power.

The Thorn language [4, 28] decreases the performance
overhead of casts by fine-tuning their granularity and the
way they are checked. They introduce like type annotations
on method parameters and return types. Method bodies are
statically typed against the like-typed parameters, but not
against their return type: Conversely, methods calls are stat-
ically checked only against the method return type. The re-
maining checks are performed dynamically. Like types are
purely nominal and do not directly support higher-order
casts, which must be encoded using objects.

Rastogi et al. [17], use local type inference to signifi-
cantly reduce the amount of untyped code in a program and
decrease the number of casts needed at runtime. This ap-
proach is automatic and effective. Confined Gradual Typing
can extend inference-based approaches with more explicit
programmer control over which values may ultimately be
cast. Conversely, CGT could be extended with a form of
qualifier inference in order to ease the task of annotating
code with the strongest guarantees possible.

In addition to runtime cost, researchers have investigated
techniques for reducing the space cost of casts. Herman et
al. [12] observed that higher-order casts can accumulate at
runtime and thereby compromise the space consumption of
gradually typed programs that appear to be tail-recursive
in the source language. They propose to use coercions to
compress chains of casts dynamically. Going a step further,
Siek and Wadler develop threesomes as a data structure and
algorithm to represent and normalize coercions [21]. These
space concerns are orthogonal to the value-flow concerns
addressed by Confined Gradual Typing.

Recently, Swamy et al. [23] developed an alternative de-
sign for embedding gradual typing securely in JavaScript.
All values are tagged with their runtime types. Performance
and reliability issues are avoided by eagerly forbidding
higher-order casts that would require wrappers. The ap-
proach is effective for first-order mutable objects, ensuring
that there are no lazy cast errors in static code, but is admit-
tedly too restrictive for higher-order patterns. CGT may be
an interesting approach to recover some flexibility.

Finally, notions of blame and blame-tracking have been
studied intently as a means to track down the source of dy-
namic errors in the face of higher-order casts [9, 15, 22, 26,
27]. These techniques are complementary to the Confined
Gradual Typing approach, which gives the programer ex-
plicit control over which values or value-flows could become
subject to implicitly-introduced higher-order casts.

8. Conclusion
Gradual typing appeals to programmers because it seam-
lessly and automatically combines typed and untyped code,
while rejecting obvious type inconsistencies. This conve-
nience, however, has its costs. Type casts smooth the bound-



aries between the typed and untyped worlds, but in higher-
order languages these casts move about as a program runs,
making it hard to predict which values will be wrapped and
why. Confined Gradual Typing introduces type qualifiers to
help programmers control which values can flow through the
untyped world and be wrapped with casts in the process.
Confined Gradual Typing can increase the predictability, re-
liability, and performance of gradually-typed programs.

Future work includes further developing the practical ex-
perience of Confined Gradual Typing to study and refine the
typical usage scenarios through larger case studies. On the
language design side, it is also interesting to consider al-
ternatives like reverting the defaults (using qualifiers to al-
low boundary crossing), providing both the strict and relaxed
variants in the same language, and generalizing the static/dy-
namic distinction to multiple parties like in TS? [23].
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A. SCGT: Type Safety
Lemma 1. (Inversion)

1. ∅ ` n : T , then |T | = Int

2. ∅ ` λx : T ′.e : T , then |T | = T1 → T2

3. ∅ ` 〈F ⇐ F ′〉f : T , then |T | = T1 → T2

4. ∅ ` 〈Dyn⇐ T 〉b : T , then T = Dyn

Proof. By case analysis:

Case v=n
1. ∅ ` n : ↓Int, by (IT-num)

2. ∅ ` n : T , |T | = Int

Case v=λx : T.e

1. ∅ ` λx : T.e : ↓(T → T ′), by (IT-abs)

2. ∅ ` λx : T.e : T ′′, |T ′′| = T → T ′

Case v=〈F ⇐ F ′〉f
1. ∅ ` 〈F ⇐ F ′〉f : F , by (IT-cast)

2. ∅ ` 〈F ⇐ F ′〉f : F , |F | = T → T ′ by definition of F

Case v=〈Dyn⇐ T 〉b
1. ∅ ` 〈Dyn⇐ T 〉b : Dyn, by (IT-cast)

Lemma 2. (Canonical forms)

1. ∅ ` v : T and |T | = Int, then ∃n, v = n

2. ∅ ` v : T and |T | = T1 → T2, then v = f

3. ∅ ` v : T and T = Dyn, then v = 〈Dyn⇐ T 〉b

Proof. By case analysis:

Case |T | = Int
1. v = n, by Lemma 1-1

Case |T | = T1 → T2

1. v = λx : T.e or v = 〈F ⇐ F ′〉f , by Lemma 1-2,3

2. v = f

Case T = Dyn
1. v = 〈Dyn⇐ T 〉b, by Lemma 1-4

Theorem 8. (Progress) If ∅ ` e : T , then e is a value or
e = CastError or ∃e′, e −→ e′.

Proof. By induction on the type rules.

Case (IT-num), (IT-abs)
1. e is a value

Case (IT-err)
1. e is CastError

Case (IT-var)
1. Case impossible with an empty environment (Well-typed)

Case (IT-app)
1. By assumption:

(a) ∅ ` e1 e2 : T12

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12

2. If e1 is not a value, use rule (E-congr) with E = � e2 to
progress.

3. If e1 is CastError, use rule (E-err) with E = � e2 to progress.

4. If e1 is a value and e2 is not a value, use rule (E-congr) with
E = e1 � to progress.

5. If e1 is a value and e2 is CastError, use rule (E-err) with
E = e1 � to progress.

6. If e1 and e2 are both values, e1 = λx : T2.e or e1 = 〈F ⇐
F ′〉 f by Lemma 2-2. Use (E-app) or (E-fcastinv) respectively
to progress.

Case (IT-add)
1. By assumption:

(a) ∅ ` e1 + e2 : ↓Int

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, T1 <: ↑Int, T2 <: ↑Int

2. If e1 is not a value, use rule (E-congr) with E = �e2 to
progress.

3. If e1 is CastError, use rule (E-err) with E = �e2 to progress.

4. If e1 is a value and e2 is not a value, use rule (E-congr) with
E = e1 + � to progress.

5. If e1 is a value and e2 is CastError, use rule (E-err) with
E = e1 + � to progress.

6. If e′1 and e2 are both values, then e1 = n1 and e2 = n2 by
Lemma 2-1. Use (E-add) to progress.

Case (IT-cast)
1. By assumption:

(a) ∅ ` 〈T3 ⇐ T2〉e : T3

(b) ∅ ` e : T1, T1 <: T2, T2 ; T3

2. If e is not a value, use rule (E-congr) with E = 〈T3 ⇐ T2〉 �
to progress.

3. If e is CastError, use rule (E-err) with E = 〈T3 ⇐ T2〉 � to
progress.

4. If e is a value and T2 <: T3, use rule (E-remove) to progress.

5. If e is a value and T2 ; T3 and T2 6<: T3, then ∃F2, F3

T2 = F2 and T3 = F3. Then 〈T3 ⇐ T2〉e is a value

Lemma 3. (Substitution) If Γ, x : T ` e : T ′ and ∅ ` v : T ′′,
T ′′ <: T , then Γ ` e[v/x] : T ′′′ and T ′′′ <: T ′′.

Proof. By induction on the type rules

Case (IT-num)
1. By assumption:

(a) Γ, x : T ` n : ↓Int

2. n[v/x] = n by Substitution definition

3. Γ, x : T ` n[v/x] : ↓Int, replacing (2) in (1-a)

4. Γ ` n[v/x] : ↓Int, by environment reduction.



Case (IT-var), y = x

1. By assumption:

(a) Γ, x : T ` x : T , Γ(x) = T

(b) ∅ ` v : T ′, T ′ <: T

2. x[v/x] = v, by Substitution definition

3. Γ ` x[v/x] : T ′, T ′ <: T replacing (2) in (1-b)

Case (IT-var), y 6= x

1. By assumption:

(a) Γ, x : T ` y : T ′, Γ(y) = T ′

2. y[v/x] = y, by Substitution definition

3. Γ ` y[v/x] : T , replacing (2) in (1-a) and environment
reduction.

Case (IT-abs)
1. By assumption:

(a) Γ, x : T ` λy : T ′.e : ↓(T ′ → T ′′)

(b) Γ, x : T, y : T ′ ` e : T ′′

2. Without loss of generality, y 6= x

3. Γ, y : T ′ ` e[v/x] : T ′′, by induction of (1-b)

4. Γ ` λy : T ′.(e[v/x]) : ↓(T ′ → T ′′), by (IT-abs)

5. Γ ` (λy : T ′.e)[v/x] : ↓(T ′ → T ′′), by Substitution
definition

Case (IT-err)
1. By assumption:

(a) Γ, x : T ` CastError : T ′

2. Γ ` CastError : T ′ by (IT-err)

3. Γ ` CastError[v/x] : T ′ by Substitution definition

Case (IT-app)
1. By assumption:

(a) Γ, x : T ` e1 e2 : T12

(b) Γ, x : T ` e1 : T1

(c) Γ, x : T ` e2 : T2

(d) |T1| = T11 → T12, T2 <: T11

2. Γ ` e1[v/x] : T1, by induction of (1-b)

3. Γ ` e2[v/x] : T2, by induction of (1-c)

4. Γ ` e1[v/x] e2[v/x] : T12, by (IT-app)

5. Γ ` (e1 e2)[v/x] : T ′, by Substitution definition

Case (IT-add)
1. By assumption:

(a) Γ, x : T ` e1 + e2 : ↓Int

(b) Γ, x : T ` e1 : T

(c) Γ, x : T ` e2 : T ′

(d) T <: ↑Int,T ′ <: ↑Int

2. Γ ` e1[v/x] : T , by induction of (1-b)

3. Γ ` e2[v/x] : T ′, by induction of (1-c)

4. Γ ` e1[v/x] + e2[v/x] : ↓Int, by (IT-add)

5. Γ ` (e1 + e2)[v/x] : ↓Int, by Substitution definition

Case (IT-cast)
1. By assumption:

(a) Γ, x : T ` 〈T ′′ ⇐ T ′〉 e : T

(b) Γ, x : T ` e : T

(c) T <: T ′, T ′ ; T

2. Γ ` e[v/x] : T ′, by induction of (1-b)

3. Γ ` 〈T ⇐ T ′〉 (e[v/x]) : T , by (IT-cast)

4. Γ ` (〈T ⇐ T ′〉 e)[v/x] : T , by Substitution definition

Theorem 9. (Preservation) If ∅ ` e : T and e −→ e′, then
∅ ` e′ : T ′ and T ′ <: T .

Proof. By induction on the evaluation rules.

Case (E-congr)

Subcase E = � e

1. By assumption:

(a) e1 e2 −→ e′1 e2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 →
T12, T2 <: T11

(c) e1 −→ e′1

2. ∅ ` e′1 : T ′1, T ′1 <: T1, |T ′1| = T ′11 → T ′12, by induction on
(1-c)

3. |T ′1| <: |T1|, by using either (SS-reflex), (SS-gainup), (SS-
losedown), (SS-down) or (SS-up)

4. T11 <: T ′11 and T ′12 <: T12, by using (SS-fun)

5. T2 <: T ′11, by using (SS-trans)

6. ∅ ` e′1 e2 : T ′12, T ′12 <: T12 by using (IT-app) and (4)

Subcase E = v �

1. By assumption:

(a) e1 e2 −→ e1 e
′
2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 →
T12, T2 <: T11

(c) e2 −→ e′2

2. ∅ ` e2 : T ′2, T ′2 <: T2

3. T ′2 <: T ′11, by using (SS-trans)

4. ∅ ` e1 e′2 : T12, by using (IT-app)

Subcase E = � + e

1. By assumption:

(a) e1 + e2 −→ e′1 + e2

(b) ∅ ` e1 + e2 : T3, ∅ ` e1 : T1, ∅ ` e2 : T2

(c) e1 −→ e′1

2. T1 <: ↑Int,T2 <: ↑Int,T3 = ↓Int (From IT-add)

3. T ′1 <: ↑Int, by induction on (1-c) and (SS-trans)

4. ∅ ` e′1 + e2 : T3, by using (IT-add)



Subcase E = v + � Analogous to E = � + e

Subcase E = 〈T ⇐ T 〉 �
1. By assumption:

(a) 〈T2 ⇐ T1〉 e −→ 〈T2 ⇐ T1〉 e′

(b) ∅ ` T2 ⇐ T1〉 e : T2, ∅ ` e : T ′, T ′ <: T

(c) e −→ e′

2. ∅ ` e′ : T ′′, T ′′ <: T ′ by induction of (1-c)

3. T ′′ <: T , by (SS-trans)

4. ∅ ` 〈T2 ⇐ T1〉 e′ : T2 (IT-cast)

Case (E-app)
1. By assumption:

(a) (λx : T.e) v −→ e[v/x]

(b) ∅ ` (λx : T.e) v : T ′, ∅ ` v : T

2. ∅ ` e[v/x] : T ′′,T ′′ <: T ′, by Substitution type preservation

Case (E-add)
1. By assumption:

(a) v1 + v2 −→ v3

(b) ∅ ` v1 + v2 : T , v3 = v1 + v2

2. T = ↓Int (From IT-add)

3. ∅ ` v3 : ↓Int (From IT-num)

4. ∅ ` v3 : T , replacing by T

Case (E-merge)
1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ |T1|〉 v
(b) T1 ; T2

2. ∅ ` 〈Dyn⇐ T1〉 v : Dyn, reverse (IT-cast) in (1-a)

3. ∅ ` v : T ′1, T ′1 <: T1 reverse (IT-cast) in (2)

4. T1 6= ↑T ′1, because ↑T ′′1 6; Dyn

5. T2 6= ↓T ′2, because Dyn 6; ↓T ′2
6. T1 = ↓T ′1 or T1 = |T ′1|
7. T2 = |T ′2| or T2 = ↑T ′2
8. |T1|; T2, (SS-losedown) and/or (SS-gainup)

9. T1 <: |T1|, by (SS-losedown) or (SS-reflex)

10. T ′1 <: |T1|, by (SS-trans) and (3)

11. ∅ ` 〈T2 ⇐ |T1|〉 v : T2 (IT-cast)

Case (E-remove)
1. By assumption:

(a) 〈T2 ⇐ T1〉 v −→ v

(b) T1 <: T2

(c) ∅ ` v : T1

2. ∅ ` v : T1 and T1 <: T2

Case (E-fcastinv)
1. By assumption:

(a) (〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(b) |F | = T1 → T2, |F ′| = T ′1 → T ′2, F ; F ′, F 6<: F ′,
T ′1 ; T1, T2 ; T ′2

(c) ∅ ` (〈F ′ ⇐ F 〉 f) v : T ′2, ∅ ` v : T

2. ∅ ` 〈F ′ ⇐ F 〉 f : F ′, (IT-cast)

3. ∅ ` f : F ′′, F ′′ <: F , |F ′′| = T ′′1 → T ′′2 inverse (IT-cast)

4. T1 <: T ′′1 , T ′′2 <: T2, by using (SS-fun)

5. T <: T ′1, inverse (IT-app) of (1-c) using (2)

6. ∅ ` 〈T1 ⇐ T ′1〉 v : T1, (IT-cast)

7. ∅ ` f 〈T1 ⇐ T ′1〉 v : T ′′2 , (IT-app)

8. ∅ ` 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)) : T ′2, (IT-cast)

Case (E-err)
1. By assumption:

(a) E[CastError] −→ CastError

(b) ∅ ` E[CastError] : T

2. ∅ ` CastError : T , by using (IT-err)

B. SCGT: Cast Insertion
Lemma 4. Γ ` 〈〈T ⇐ T ′〉〉 e : T ′′ and Γ ` e : T ′, then T ′′ <: T

Proof. By case analysis

Case T ′ <: T

1. Assumptions:

(a) Γ ` e : T ′

(b) T ′ <: T

2. T ′ <: T , by (1-b)

Case T ′ 6<: T

1. Assumptions:

(a) Γ ` 〈T ⇐ T ′〉 e : T ′′

(b) Γ ` e : T ′

2. Γ ` 〈T ⇐ T ′〉 e : T , by (IT-cast)

Theorem 10. (Cast insertion preserves typing) if Γ ` e ⇒ e′ : T
in the source language, then Γ ` e′ : T in the internal language.

Proof. By induction on the type rules.

Case (C-num)
1. By assumption:

(a) Γ ` n⇒ n : ↓Int

2. Γ ` n : ↓Int, by using (IT-num)

Case (C-var)
1. By assumption:

(a) Γ ` x⇒ x : T

(b) Γ(x) = T

2. Γ ` x : T , by using (IT-var)



Case (C-abs)
1. By assumption:

(a) Γ ` λx : T1.e⇒ λx : T1.e
′ : ↓(T1 → T2)

(b) Γ, x : T1 ` e⇒ e′ : T2

2. Γ, x : T1 ` e′ : T2, by induction of (1-b)

3. Γ ` λx : T1.e
′ : ↓(T1 → T2), by using (IT-abs)

Case (C-app1)
1. By assumption:

(a) Γ ` e1 e2 ⇒ (〈(T2 → Dyn)⇐ Dyn〉e′1)e′2 : Dyn

(b) Γ ` e1 ⇒ e′1 : Dyn

(c) Γ ` e2 ⇒ e′2 : T2

(d) T2 ; Dyn

2. Dyn→ Dyn ; T2 → Dyn, by (DC-fun)

3. Dyn ; T2 → Dyn, by (DC-dynfun2)

4. Γ ` e′1 : Dyn and Γ ` e′2 : T2, by induction of (1-b) and (1-c)

5. Γ ` (〈(T2 → Dyn)⇐ Dyn〉e′1) : T2 → Dyn, by (IT-cast)

6. Γ ` (〈(T2 → Dyn)⇐ Dyn〉e′1)e′2 : Dyn, by (IT-app)

Case (C-app2)
1. By assumption:

(a) Γ ` e1 e2 ⇒ e′1(〈〈T11 ⇐ T2〉〉e′2) : T12

(b) Γ ` e1 ⇒ e′1 : T1

(c) Γ ` e2 ⇒ e′2 : T2

(d) |T1| = T11 → T12 and T2 ; T11

2. Γ ` e′1 : T1 and Γ ` e′2 : T2, by induction of (1-b) and (1-c)

3. Γ ` 〈〈T11 ⇐ T2〉〉e′2 : T ′ and T ′ <: T11, by Lemma 4

4. Γ ` e′1(〈〈T11 ⇐ T2〉〉e′2) : T12, by (IT-app)

Case (C-add)
1. By assumption:

(a) Γ ` e1 + e2 ⇒ (〈〈↑Int ⇐ T1〉〉e′1) + (〈〈↑Int ⇐ T2〉〉e′2) :
↓Int

(b) Γ ` e1 ⇒ e′1 : T1

(c) Γ ` e2 ⇒ e′2 : T2

(d) T1 ; ↑Int and T2 ; ↑Int

2. Γ ` e′1 : T1 and Γ ` e′2 : T2, by induction of (1-b) and (1-c)

3. Γ ` (〈〈↑Int⇐ T1〉〉e′1) : T ′1 and T ′1 <: ↑Int, by Lemma 4

4. Γ ` (〈〈↑Int⇐ T2〉〉e′2) : T ′2 and T ′2 <: ↑Int, by Lemma 4

5. Γ ` (〈〈↑Int⇐ T1〉〉e′1) + (〈〈↑Int⇐ T2〉〉e′2) : ↓Int, by (IT-add)

C. SCGT: Correctness of Qualifiers
Taint-tracking internal language definition:

• syntax: Figure 13

• static semantics: Figure 14

• dynamic semantics: Figure 15

Note that the semantics (and the proofs) use the following nota-
tions to express predicates on marked values:

1. v◦: Has never passed through Dyn (i.e. a value that underneath
is marked with ◦)

2. v•: Has passed through Dyn (i.e. a value that underneath is
marked with •)

3. v̂: Can never pass through Dyn (i.e. a value that underneath is
marked with ˆ)

4. v: can be any of the above

Lemma 5. If T1 ; ↓T2, then T1 <: ↓T2.

Proof. There is only one rule in the direct consistency relationship
that takes ↓T2 in the right side(DC-down). And that rule requires
that ∃T ′1, T1 = ↓T ′1 and T ′1 <: T2 to be able to use it. Using (SS-
down), T1 <: ↓T2

Lemma 6. (Inversion, taint tracking)

1. if ∅ ` n◦ : T , then T = ↓Int

2. if ∅ ` n◦̂ : T , then T = lInt

3. if ∅ ` n• : T , then T = Int

4. if ∅ ` n•̂ : T , then T = ↑Int

5. if ∅ ` λ◦x : T ′.e : T , then T = ↓(T1 → T2)

6. if ∅ ` λ◦̂x : T ′.e : T , then T = l(T1 → T2)

7. if ∅ ` λ•x : T ′.e : T , then T = T1 → T2

8. if ∅ ` λ•̂x : T ′.e : T , then T = ↑(T1 → T2)

9. if ∅ ` 〈F ⇐ F ′〉 f : T , then T = T1 → T2 or T = ↑(T1 →
T2)

10. if ∅ ` 〈Dyn⇐ T 〉b : T , then T = Dyn

Proof. By case analysis:

Case v=n◦

1. ∅ ` n◦ : ↓Int, by (TTT-num1)

Case v=n◦̂

1. ∅ ` n◦ : ↓Int, by (TTT-num1)

2. ∅ ` n◦̂ : lInt, by (TTT-↑)

Case v=n•

1. ∅ ` n• : Int, by (TTT-num2)

Case v=n•̂

1. ∅ ` n• : Int, by (TTT-num2)

2. ∅ ` n•̂ : ↑Int, by (TTT-↑)

Case v=λ◦x : T.e

1. ∅ ` λ◦x : T.e : ↓(T → T ′), by (TTT-abs1)

Case v=λ◦̂x : T.e

1. ∅ ` λ◦x : T.e : ↓(T → T ′), by (TTT-abs1)

2. ∅ ` λ◦̂x : T.e : l(T → T ′), by (TTT-↑)

Case v=λ•x : T.e

1. ∅ ` λ•x : T.e : T → T ′, by (TTT-abs2)



e ::= n | λx : T.e | 〈T ⇐ T 〉 e | e e | e+ e Expressions
t ::= ◦ | • Taint
m ::= t | t̂ Mark
sm ::= nm | λmx : T.e Marked primitive value
b ::= nm | f Base values
f ::= λmx : T.e | 〈F ⇐ F ′〉 f Function values (F ′ 6<: F )
v ::= b | 〈Dyn⇐ T 〉 b Values (T 6= Dyn)
P ::= B | Dyn Primitive Type
F ::= T → T | ↓F | ↑F Function type
T ::= P | T → T | ↑T | ↓T Type
E ::= � e | v � | � + e | v + � | 〈T ⇐ T 〉 � Evaluation Frames

Figure 13. SCGT taint-tracking: Syntax.

(TTT-num1)
Γ ` n◦ : ↓Int

(TTT-num2)
Γ ` n• : Int

(TTT-var)
Γ(x) = T

Γ ` x : T
(TTT-err)

Γ ` CastError : T

(TTT-abs1)
Γ, x : T1 ` e : T2

Γ ` λ◦x : T1.e : ↓(T1 → T2)
(TTT-abs2)

Γ, x : T1 ` e : T2
Γ ` λ•x : T1.e : T1 → T2

(TTT-↑) Γ ` st : T

Γ ` st̂ : ↑T

(TTT-app)
Γ ` e1 : T1 Γ ` e2 : T2 |T1| = T11 → T12 T2 <: T11

Γ ` e1 e2 : T12

(TTT-add)
Γ ` e1 : T1 Γ ` e2 : T2 T1 <: ↑Int T2 <: ↑Int

Γ ` e1 + e2 : ↓Int

(TTT-cast)
Γ ` e : T1 T1 <: T2 T2 ; T3

Γ ` 〈T3 ⇐ T2〉 e : T3

Figure 14. SCGT taint-tracking: Typing.

(TTE-congr) e −→ e′

E[e] −→ E[e′]
(TTE-app1)

T 6= ↑T ′

(λx : T .e) v −→ e[v/x]
(TTE-app2)

T = ↑T ′

(λx : T .e) v −→ e[v̂/x]

(TTE-add)
n3 = n1 + n2
n1 + n2 −→ n◦3

(TTE-merge1)
T1 ; T2 T 6= Dyn v 6= v̂′

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v◦ −→ 〈T2 ⇐ |T1|〉v•

(TTE-merge2)
T1 ; T2 T 6= Dyn v 6= v̂′

〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v• −→ 〈T2 ⇐ T1〉v•
(TTE-remove1)

T1 <: T2 T2 6= ↑T ′

〈T2 ⇐ T1〉 v −→ v

(TTE-remove2)
T1 <: T2 T2 = ↑T ′

〈T2 ⇐ T1〉 v −→ v̂

(TTE-fcastinv)
|F | = T1 → T2 |F ′| = T ′1 → T ′2 F ; F ′ F 6<: F ′

(〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(TTE-err)
E[CastError] −→ CastError

(TTE-merge-err)
T1 6; T3

〈T3 ⇐ Dyn〉〈Dyn⇐ T1〉v −→ CastError

Figure 15. SCGT taint-tracking: Evaluation.



Case v=λ•̂x : T.e

1. ∅ ` λ•x : T.e : T → T ′, by (TTT-abs2)

2. ∅ ` λ•̂x : T.e : ↑(T → T ′), by (TTT-↑)

Case v=〈F ⇐ F ′〉f
1. F ′ ; F , F ′ 6<: F , by Well-typed value

2. ∅ ` 〈F ⇐ F ′〉f : F , by (TTT-cast)

3. ∅ ` 〈F ⇐ F ′〉f : F , |F | = T → T ′ by definition of F

4. F 6<: ↓(T → T ′), by contradiction between assumptions and
Lemma 5

5. ∅ ` 〈F ⇐ F ′〉f : F , F = T → T ′ or F = ↑(T → T ′)

Case v=〈Dyn⇐ T 〉b
1. ∅ ` 〈Dyn⇐ T 〉b : Dyn, by (TTT-cast)

Lemma 7. (Canonical forms, taint tracking)

1. ∅ ` v : T and T <: ↓Int, then ∃n, v = n◦

2. ∅ ` v : T and T <: Int, then ∃n, v = n◦ or v = n•

3. ∅ ` v : T and T <: ↑Int, then ∃n, v = n

4. ∅ ` v : T and T <: ↓(T1 → T2), then ∃T ′, x, e, v = λ◦x :
T ′.e and T <: T ′

5. ∅ ` v : T and T <: T1 → T2, then v = λ◦x : T ′.e or
v = λ•x : T ′.e or v = 〈T1 → T2 ⇐ F ′〉f

6. ∅ ` v : T and T <: ↑(T1 → T2), then v = f

7. ∅ ` v : Dyn, then v = 〈Dyn⇐ T 〉 b◦ or v = 〈Dyn⇐ T 〉 b•

Proof. By case analysis:

Case T <: ↓Int
1. v = n◦, by Lemma 6-1

Case T <: Int
1. v = n◦ or v = n•, by Lemma 6-1,3

Case T <: ↑Int
1. v = n◦ or v = n◦̂ or v = n• or v = n•̂, by Lemma 6-1,2,3,4

2. v = n

Case T <: ↓(T1 → T2)

1. v = λ◦x : T ′.e, by Lemma 6-5

Case T <: T1 → T2

1. v = λ◦x.e or v = λ•x.e or v = 〈F ⇐ F ′〉f , by Lemma 6-
5,7,9

2. v = λ◦x.e or v = λ•x.e or v = 〈T1 → T2 ⇐ F ′〉f , by
(TTT-cast)

Case T <: ↑(T1 → T2)

1. v = λ◦x.e or v = λ◦̂x.e or v = λ•x.e or v = λ•̂x.e or
v = 〈F ⇐ F ′〉f , by Lemma 6-5,6,7,8,9

2. v = f

Case T = Dyn
1. v = 〈Dyn⇐ T 〉b, by Lemma 6-10

2. T ; Dyn, by (TTT-cast)

3. T 6= ↑T ′

4. b 6= v̂, by Lemma 7-1,2,4,5

Lemma 8. If ∅ ` v : T and T <: ↑T , then ∅ ` v̂ : ↑T

Proof. By case analysis of values:

Case T = Int
1. v = n, by Lemma 7-3

2. ∅ ` n̂ : ↑Int, by (TTT-↑)

Case T = T1 → T2

1. v = f , by Lemma 7-6

2. v = λx : T1.e or v = 〈↑T ⇐ T ′〉 f
3. v = λx : T1.e:

(a) x : T1 ` e : T2, well typed value

(b) ∅ ` λ̂x : T1.e : ↑T , by (TTT-↑)
4. v = 〈↑T ⇐ T ′〉 f :

(a) ∅ ` f : T ′, well typed value

(b) ̂〈↑T ⇐ T ′〉 f : ↑T , by (TTT-cast)

Theorem 11. (Progress, taint tracking) If ∅ ` e : T , then e is a
value or e = CastError or ∃e′, e −→ e′.

Proof. By induction on the type rules.

Case (TTT-num1), (TTT-num2), (TTT-abs1), (TTT-abs2),
(TTT-↑)
1. e is a value

Case (TTT-err)
1. e is CastError

Case (TTT-var)
1. Case impossible with an empty environment (Well-typed)

Case (TTT-app)
1. By assumption:

(a) ∅ ` e1 e2 : T3

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 → T12, T2 <: T11

2. If e1 is not a value, use rule (TTE-congr) with E = � e2 to
progress.

3. If e1 is CastError, use rule (TTE-err) with E = � e2 to
progress.

4. If e1 is a value and e2 is not a value, use rule (TTE-congr) with
E = e1 � to progress.

5. If e1 is a value and e2 is CastError, use rule (TTE-err) with
E = e1 � to progress.

6. If e1 and e2 are both values, e1 = λx : T ′.e or e1 = 〈F ⇐
F ′〉 f by Lemma 7-6. Use (TTE-app1), or (TTE-app2) for the
former or (TTE-fcastinv) for the latter to progress.



Case (TTT-add)
1. By assumption:

(a) ∅ ` e1 + e2 : ↓Int

(b) ∅ ` e1 : T1, ∅ ` e2 : T2, T1 <: ↑Int, T2 <: ↑Int

2. If e1 is not a value, use rule (TTE-congr) with E = � + e2 to
progress.

3. If e1 is CastError, use rule (TTE-err) with E = � + e2 to
progress.

4. If e1 is a value and e2 is not a value, use rule (TTE-congr) with
E = e1 + � to progress.

5. If e1 is a value and e2 is CastError, use rule (TTE-err) with
E = e1 + � to progress.

6. If e1 and e2 are both values, then e1 = n1 and e2 = n2 by
Lemma 7-3. Use (TTE-add) to progress.

Case (TTT-cast)
1. By assumption:

(a) ∅ ` 〈T2 ⇐ T1〉e : T2

(b) ∅ ` e : T ′1, T ′1 <: T1, T1 ; T2

2. If e is not a value, use rule (TTE-congr) with E = 〈T2 ⇐
T1〉 � to progress.

3. If e is CastError, use rule (TTE-err) with E = 〈T2 ⇐ T1〉 � to
progress.

4. If e is a value and T1 = Dyn, then e1 = 〈Dyn ⇐ T ′〉 v◦ or
e1 = 〈Dyn⇐ T ′〉 v• by Lemma 7-7. Use rule (TTE-merge1),
(TTE-merge2) or (TTE-merge-err) to progress.

5. If e is a value and T1 <: T2, use rule (TTE-remove1) or (TTE-
remove2) to progress.

6. If e is a value and T1 ; T2 and T1 6<: T2, then ∃F1, F2

T1 = F1 and T2 = F2. Then 〈T2 ⇐ T1〉e is a value

Lemma 9. (Substitution) If Γ, x : T ` e : T ′ and ∅ ` v : T ′′,
T ′′ <: T , then Γ ` e[v/x] : T ′′′ and T ′′′ <: T ′.

Proof. By induction on the type rules

Case (TTT-num1)
1. By assumption:

(a) Γ, x : T ` n◦ : ↓Int

2. n◦[v/x] = n◦ by Substitution definition

3. Γ, x : T ` n◦[v/x] : ↓Int, replacing (2) in (1-a)

4. Γ ` n◦[v/x] : ↓Int, by environment reduction.

Case (TTT-num2)
1. By assumption:

(a) Γ, x : T ` n• : Int

2. n•[v/x] = n• by Substitution definition

3. Γ, x : T ` n•[v/x] : Int, replacing (2) in (1-a)

4. Γ ` n•[v/x] : Int, by environment reduction.

Case (TTT-var), y = x

1. By assumption:

(a) Γ, x : T ` x : T , Γ(x) = T

(b) ∅ ` v : T ′, T ′ <: T

2. x[v/x] = v, by Substitution definition

3. Γ ` x[v/x] : T ′, T ′ <: T replacing (2) in (1-b)

Case (TTT-var), y 6= x

1. By assumption:

(a) Γ, x : T ` y : T ′, Γ(y) = T ′

2. y[v/x] = y, by Substitution definition

3. Γ ` y[v/x] : T ′, replacing (2) in (1-a) and environment
reduction.

Case (TTT-err)
1. By assumption:

(a) Γ, x : T ` CastError : T ′

2. Γ ` CastError : T ′, by using (TTT-err)

3. Γ ` CastError[v/x] : T ′, by Substitution definition

Case (TTT-abs1)
1. By assumption:

(a) Γ, x : T ` λ◦y : T ′.e : ↓(T ′ → T ′′)

(b) Γ, x : T, y : T ′ ` e : T ′′

2. Without loss of generality, y 6= x

3. Γ, y : T ′ ` e[v/x] : T ′′, by induction of (1-b)

4. Γ ` λ◦y : T ′.(e[v/x]) : ↓(T ′ → T ′′), by (TTT-abs1)

5. Γ ` (λ◦y : T ′.e)[v/x] : ↓(T ′ → T ′′), by Substitution
definition

Case (TTT-abs2)
1. By assumption:

(a) Γ, x : T ` λ•y : T ′.e : T ′ → T ′′

(b) Γ, x : T, y : T ′ ` e : T ′′

2. Without loss of generality, y 6= x

3. Γ, y : T ′ ` e[v/x] : T ′′, by induction of (1-b)

4. Γ ` λ•y : T ′.(e[v/x]) : T ′ → T ′′, by (TTT-abs2)

5. Γ ` (λ•y : T ′.e)[v/x] : T ′ → T ′′, by Substitution definition

Case (TTT-↑)
1. By assumption:

(a) Γ, x : T ` st̂ : ↑T ′

(b) Γ, x : T ` st : T ′

2. st̂ = st̂[v/x], by Substitution definition

3. Γ ` st̂[v/x] : T ′, by (TTT-up)



Case (TTT-app)
1. By assumption:

(a) Γ, x : T ` e1 e2 : T11

(b) Γ, x : T ` e1 : T1

(c) Γ, x : T ` e2 : T2

(d) |T1| = T11 → T12, T2 <: T11

2. Γ ` e1[v/x] : T1, by induction of (1-b)
3. Γ ` e2[v/x] : T2, by induction of (1-c)
4. Γ ` e1[v/x] e2[v/x] : T12, by (TTT-app)
5. Γ ` (e1 e2)[v/x] : T12, by Substitution definition

Case (TTT-add)
1. By assumption:

(a) Γ, x : T ` e1 + e2 : ↓Int
(b) Γ, x : T ` e1 : T

(c) Γ, x : T ` e2 : T ′

(d) T <: ↑Int,T ′ <: ↑Int
2. Γ ` e1[v/x] : T , by induction of (1-b)
3. Γ ` e2[v/x] : T ′, by induction of (1-c)
4. Γ ` e1[v/x] + e2[v/x] : ↓Int, by (TTT-add)
5. Γ ` (e1 + e2)[v/x] : ↓Int, by Substitution definition

Case (TTT-cast)
1. By assumption:

(a) Γ, x : T ` 〈T ⇐ T ′〉 e : T

(b) Γ, x : T ` e : T ′′

(c) T ′ ; T , T ′′ <: T ′

2. Γ ` e[v/x] : T ′′, by induction of (1-b)
3. Γ ` 〈T ⇐ T ′〉 (e[v/x]) : T , by (TTT-cast)
4. Γ ` (〈T ⇐ T ′〉 e)[v/x] : T , by Substitution definition

Theorem 12. (Preservation, taint tracking) If ∅ ` e : T and
e −→ e′, then ∅ ` e′ : T ′ and T ′ <: T .

Proof. By induction on the evaluation rules.

Case (TTE-congr)
Subcase E = � e

1. By assumption:
(a) e1 e2 −→ e′1 e2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 →
T12, T2 <: T11

(c) e1 −→ e′1

2. ∅ ` e′1 : T ′1, T ′1 <: T1, |T ′1| = T ′11 → T ′12, by induction on
(1-c)

3. |T ′1| <: |T1|, by using either (SS-reflex), (SS-gainup), (SS-
losedown), (SS-down) or (SS-up)

4. T11 <: T ′11 and T ′12 <: T12, by using (SS-fun)
5. T2 <: T ′11, by using (SS-trans)
6. ∅ ` e′1 e2 : T ′12, T ′12 <: T12 by using (TTT-app) and (4)

Subcase E = v �

1. By assumption:

(a) e1 e2 −→ e1 e
′
2

(b) ∅ ` e1 e2 : T12, ∅ ` e1 : T1, ∅ ` e2 : T2, |T1| = T11 →
T12, T2 <: T11

(c) e2 −→ e′2

2. ∅ ` e2 : T ′2, T ′2 <: T2

3. T ′2 <: T ′11, by using (SS-trans)

4. ∅ ` e1 e′2 : T12, by using (TTT-app)

Subcase E = � + e

1. By assumption:

(a) e1 + e2 −→ e′1 + e2

(b) ∅ ` e1 + e2 : T3, ∅ ` e1 : T1, ∅ ` e2 : T2

(c) e′1 −→ e′′1

2. T1 <: ↑Int,T2 <: ↑Int,T3 <: ↓Int (From TTT-add)

3. T ′1 <: T1, by induction on (1-c)

4. T ′1 <: ↑Int, by using (SS-trans)

5. ∅ ` e′1 + e2 : T3, by using (TTT-add)

Subcase E = v + � Analogous to subcase E = � + e

Subcase E = 〈T ⇐ T 〉 �
1. By assumption:

(a) 〈T2 ⇐ T1〉 e −→ 〈T2 ⇐ T1〉 e′

(b) ∅ ` T2 ⇐ T1〉 e : T2, ∅ ` e : T ′1, T ′1 <: T1

(c) e −→ e′

2. ∅ ` e′ : T ′′1 , T ′′1 <: T ′1 by induction of (1-c)

3. T ′′1 <: T1, by (SS-trans)

4. ∅ ` 〈T2 ⇐ T1〉 e′ : T2 (TTT-cast)

Case (TTE-app1)
1. By assumption:

(a) (λx : T.e) v −→ e[v/x]

(b) ∅ ` (λx : T.e) v : T ′, ∅ ` v : T , T 6= ↑T ′′

2. ∅ ` e[v/x] : T ′′, T ′′ <: T ′, by Substitution type preservation

Case (TTE-app2)
1. By assumption:

(a) (λx : T.e) v −→ e[v̂/x]

(b) ∅ ` (λx : T.e) v : T ′, ∅ ` v : T , T = ↑T ′′

2. ∅ ` v̂ : T , by Lemma 8

3. ∅ ` e[v̂/x] : T ′′, T ′′ <: T ′, by Substitution type preservation



Case (TTE-add)
1. By assumption:

(a) v1 + v2 −→ v◦3

(b) ∅ ` v1 + v2 : T ′, v3 = v1 + v2

2. T ′ = ↓Int (From TTT-add)

3. ∅ ` v◦3 : ↓Int (From TTT-num1)

4. ∅ ` v◦3 : T ′, replacing T ′

Case (TTE-merge1)
1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v◦ −→ 〈T2 ⇐ |T1|〉 v•

(b) T1 ; T2

2. T2 6= ↓T ′2, because Dyn 6; ↓T ′2
3. ∅ ` 〈Dyn⇐ T1〉 v◦ : Dyn, reverse (TTT-cast) in (1-a)

4. ∅ ` v◦ : T ′1, T ′1 <: T1 reverse (TTT-cast) in (2)

5. ∅ ` v• : |T ′1|, by either (TTT-num2) or (TTT-abs2)

6. |T ′1| <: |T1|, either by (SS-losedown) or (SS-down)

7. |T1| <: T2, by either (SS-reflex), (SS-losedown) or (SS-gainup)

8. ∅ ` 〈T2 ⇐ |T1|〉 v• : T2 (TTT-cast)

Case (TTE-merge2)
1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v• −→ 〈T2 ⇐ T1〉 v•

(b) T1 ; T2

2. ∅ ` 〈Dyn⇐ T1〉 v• : Dyn, reverse (TTT-cast) in (1-a)

3. ∅ ` v• : T ′1, T ′1 <: T1 reverse (TTT-cast) in (2)

4. ∅ ` 〈T2 ⇐ T1〉 v• : T2 (TTT-cast)

Case (TTE-remove1)
1. By assumption:

(a) 〈T2 ⇐ T1〉 v −→ v

(b) T1 <: T2, T2 6= ↑T ′2
(c) ∅ ` v : T1

2. ∅ ` v : T1, T1 <: T2

Case (TTE-remove2)
1. By assumption:

(a) 〈T2 ⇐ T1〉 v −→ v̂

(b) T1 <: T2, T2 = ↑T ′2
(c) ∅ ` v : T1

2. ∅ ` v̂ : ↑T ′1, by Lemma 8

3. ↑T ′1 <: T2, (by SS-gainup)

Case (TTE-fcastinv)
1. By assumption:

(a) (〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(b) |F | = T1 → T2, |F ′| = T ′1 → T ′2, F ; F ′, F 6<: F ′,
T ′1 ; T1, T2 ; T ′2

(c) ∅ ` (〈F ′ ⇐ F 〉 f) v : T ′2, ∅ ` v : T

2. ∅ ` 〈F ′ ⇐ F 〉 f : F ′, (TTT-cast)

3. ∅ ` f : F ′′, F ′′ <: F , |F ′′| = T ′′1 → T ′′2 inverse (TTT-cast)

4. T1 <: T ′′1 , T ′′2 <: T2, by using (SS-fun)

5. T <: T ′1, inverse (TTT-app) of (1-c) using (2)

6. ∅ ` 〈T1 ⇐ T ′1〉 v : T1, (TTT-cast)

7. ∅ ` f 〈T1 ⇐ T ′1〉 v : T ′′2 , (TTT-app)

8. ∅ ` 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)) : T ′2, (TTT-cast)

Case (TTE-err)
1. By assumption:

(a) E[CastError] −→ CastError

(b) ∅ ` E[CastError] : T

2. ∅ ` CastError : T , by using (TTT-err)

Theorem 13. (↓ correctness) If ∅ ` v : ↓T , then v = v′◦.

Proof. Direct proof by using the Canonical form lemma.

Theorem 14. (↑ correctness) If ∅ ` 〈Dyn ⇐ T 〉 v : Dyn, then
v 6= v̂′.

Proof. Direct proof by using the Canonical form lemma.

Erasure. To define taint erasure, we use brown coloring to de-
note an expression that lives in the original (non-taint-tracking) lan-
guage.

Definition 1. (Erase)

1. erase(n) = n

2. erase(λx : T.e) = λx : T.e

3. erase(〈T2 ⇐ T1〉 e) = 〈T2 ⇐ T1〉 erase(e)

4. erase(e1 e2) = erase(e1) erase(e2)

5. erase(e1 + e2) = erase(e1)+erase(e2)

6. erase(e[v/x]) = erase(e)[erase(v)/x]

Lemma 10. erase(e) = e

Proof. By induction on the syntax:

Case e = n

1. erase(n) = n, by Definition 1-1

Case e = λx : T.e

1. erase(λx : T.e) = λx : T.e, by Definition 1-2

Case e = 〈T2 ⇐ T1〉 e′

1. erase(〈T2 ⇐ T1〉 e′) = 〈T2 ⇐ T1〉 erase(e′), by Definition 1-
3

2. erase(e′) = e′,by induction on e′

3. 〈T2 ⇐ T1〉 erase(e′) = 〈T2 ⇐ T1〉 e′, by 2

Case e = e1 e2

1. erase(e1 e2) = erase(e1) erase(e2), by Definition 1-4

2. erase(e1) = e1, erase(e2) = e2, by induction on e1 and e2

3. erase(e1) erase(e2) = e1 e2, by 2



Case e = e1 + e2

1. erase(e1 + e2) = erase(e1)+erase(e2), by Definition 1-5

2. erase(e1) = e1, erase(e2) = e2, by induction on e1 and e2

3. erase(e1)+erase(e2) = e1+e2, by 2

Corollary 1. erase(v) = v

Proof. Direct proof using Lemma 10

Theorem 15. (Tainting faithfulness) If e −→ e′, then erase(e) −→
erase(e′).

Proof. By induction on the evaluation rules.

Case (TTE-congr)

Subcase E = � e

1. By assumption:

(a) e = e1 e2, e′ = e′1 e2

(b) e1 −→ e′1

2. erase(e1 e2) = erase(e1) erase(e2), by Definition 1-4

3. erase(e1) −→ erase(e′1), by induction on (1-b)

4. erase(e1) erase(e2) −→ erase(e′1) erase(e2), by (E-congr)
with E = � e

5. erase(e′1) erase(e2) = erase(e′1 e2), by Definition 1-4

Subcase E = v � Analogous to subcase E = � e

Subcase E = � + e

1. By assumption:

(a) e = e1 + e2, e′ = e′1 + e2

(b) e1 −→ e′1

2. erase(e1 + e2) = erase(e1)+erase(e2), by Definition 1-5

3. erase(e1) −→ erase(e′1), by induction on (1-b)

4. erase(e1)+erase(e2) −→ erase(e′1)+erase(e2), by (E-congr)
with E = � + e

5. erase(e′1)+erase(e2) = erase(e′1 + e2), ¿by Definition 1-5

Subcase E = v + � Analogous to subcase E = � + e

Subcase E = 〈T ⇐ T 〉 �
1. By assumption:

(a) e = 〈T2 ⇐ T1〉 e′′, e′ = 〈T2 ⇐ T1〉 e′′′

(b) ∅ ` T2 ⇐ T1〉 e′ : T2, ∅ ` e′ : T1

(c) e′′ −→ e′′′

2. erase(〈T2 ⇐ T1〉 e′′) = 〈T2 ⇐ T1〉 erase(e′′), by Defini-
tion 1-3

3. erase(e′′) −→ erase(e′′′) by induction of (1-c)

4. 〈T2 ⇐ T1〉 erase(e′′) −→ 〈T2 ⇐ T1〉 erase(e′′′) by (E-congr)
with E = 〈T ⇐ T 〉 �

5. 〈T2 ⇐ T1〉 erase(e′′′) = erase(〈T2 ⇐ T1〉 e′′′), by Defini-
tion 1-3

Case (TTE-app1)
1. By assumption:

(a) e = (λx : T.e′′) v, e′ = e′′[v/x]

(b) T 6= ↑T ′

2. erase((λx : T.e′′) v) = erase(λx : T.e′′) erase(v)

3. erase(λx : T.e′′) erase(v) = (λx : T.e′′) v, by Definition 1-2
and Lemma 10

4. (λx : T.e′′) v −→ e′′[v/x], by (E-app)

5. erase(e′′[v/x]) = erase(e′′)[erase(v)/x], by Definition 1-6

6. erase(e′′)[erase(v)/x] = e′′[v/x], by Lemma 10 on both e′′

and v

Case (TTE-app2)
1. By assumption:

(a) e = (λx : T.e′′) v, e′ = e′′[v̂/x]

(b) (λx : T.e) v −→ e[v̂/x]

(c) T = ↑T ′

2. erase((λx : T.e′′) v) = erase(λx : T.e′′) erase(v)

3. erase(λx : T.e′′) erase(v) = (λx : T.e′′) v, by Definition 1-2
and Lemma 10

4. (λx : T.e′′) v −→ e′′[v/x], by (E-app)

5. erase(e′′[v̂/x]) = erase(e′′)[erase(v̂)/x], by Definition 1-6

6. erase(e′′)[erase(v̂)/x] = e′′[v/x], by Lemma 10 on both e′′

and v̂

Case (TTE-add)
1. By assumption:

(a) e = n1 + n2, e′ = n◦3

(b) n3 = n1 + n2

2. erase(n1 + n2) = erase(n1)+erase(n2), by Definition 1-5

3. erase(n1)+erase(n2) = n1+n2, by Definition 1-1

4. n1+n2 −→ n3, by (E-add)

5. erase(n◦3) = n3, by Definition 1-1

Case (TTE-merge1)
1. By assumption:

(a) e = 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v◦,e′ = 〈T2 ⇐ |T1|〉 v•

(b) T1 ; T2

2. erase(〈T2 ⇐ Dyn〉〈Dyn ⇐ T1〉 v◦) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v◦), by Definition 1-3

3. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v◦) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ |T1|〉 v, by (E-merge)

5. erase(〈T2 ⇐ |T1|〉 v•) = 〈T2 ⇐ |T1|〉 erase(v•), by Defini-
tion 1-3

6. 〈T2 ⇐ |T1|〉 erase(v•)
= 〈T2 ⇐ |T1|〉 v, by Lemma 10



Case (TTE-merge2)
1. By assumption:

(a) e = 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v•,e′ = 〈T2 ⇐ T1〉 v•

(b) T1 ; T2

2. erase(〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v•) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v•), by Definition 1-3

3. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 erase(v•) =
〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ |T1|〉 v, by (E-merge)

5. T1 6= ↑T ′1, because T1 6; Dyn

6. T1 = |T1|, by Lemma 2-7

7. erase(〈T2 ⇐ T1〉 v•) = erase(〈T2 ⇐ |T1|〉 v•), by replacing
T1

8. erase(〈T2 ⇐ |T1|〉 v•) = 〈T2 ⇐ |T1|〉 erase(v•), by Defini-
tion 1-3

9. 〈T2 ⇐ |T1|〉 erase(v•) = 〈T2 ⇐ |T1|〉 v, by Lemma 10

Case (TTE-remove1)
1. By assumption:

(a) e = 〈T2 ⇐ T1〉 v, e′ = v

(b) T1 <: T2, T2 6= ↑T ′2
2. erase(〈T2 ⇐ T1〉 v) = 〈T2 ⇐ T1〉 erase(v), by Definition 1-3

3. 〈T2 ⇐ T1〉 erase(v) = 〈T2 ⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ T1〉 v −→ v, by (E-remove)

5. erase(v) = v, by Lemma 10

Case (TTE-remove2)
1. By assumption:

(a) e = 〈T2 ⇐ T1〉 v, e′ = v̂

(b) T1 <: T2, T2 = ↑T ′2
2. erase(〈T2 ⇐ T1〉 v) = 〈T2 ⇐ T1〉 erase(v), by Definition 1-3

3. 〈T2 ⇐ T1〉 erase(v) = 〈T2 ⇐ T1〉 v, by Lemma 10

4. 〈T2 ⇐ T1〉 v −→ v, by (E-remove)

5. erase(v̂) = v, by Lemma 10

Case (TTE-fcastinv)
1. By assumption:

(a) e = (〈F ′ ⇐ F 〉 f) v, e′ = 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))

(b) |F | = T1 → T2, |F ′| = T ′1 → T ′2, F ; F ′, F 6<: F ′

2. erase((〈F ′ ⇐ F 〉 f) v) = (〈F ′ ⇐ F 〉 f) v, by Lemma 10

3. (〈F ′ ⇐ F 〉 f) v −→ 〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)), by (E-
fcastinv)

4. erase(〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v))) =
〈T ′2 ⇐ T2〉(f (〈T1 ⇐ T ′1〉 v)), by Lemma 10

D. RCGT- Type Safety
Progress is the same as SCGT.

Theorem 16. (Preservation) If ∅ ` e : T and e −→ e′, then
∅ ` e′ : T ′ and T ′ <: T .

Proof. Same as SCGT, except:

Case (E-merge)
1. By assumption:

(a) 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉 v −→ 〈T2 ⇐ T1〉 v
(b) T1 ; T2

2. ∅ ` 〈Dyn⇐ T1〉 v : Dyn, reverse (T-cast) in (1-a)

3. ∅ ` v : T1 reverse (T-cast) in (2)

4. ∅ ` 〈T2 ⇐ T1〉 v : T2 (T-cast)

E. RCGT- Correctness of Qualifiers
Lemma 11. If T1 ; ↓T2 and T1 6= Dyn, then T1 <: ↓T2.

Proof. By induction on the Directed consistency rules that can take
T1 6= Dyn and T ′2 = ↓T2

Case (DC-losedown)
1. By assumption:

(a) T1 = ↓T ′1, T1 ; ↓T2

(b) T ′1 ; ↓T2

2. T1 <: T ′1, by (SS-losedown)

3. T ′1 <: ↓T2, by induction on (1-b)

4. T1 <: ↓T2, by (SS-trans)

Case (DC-gainup)
1. By assumption:

(a) T2 = ↑T ′2, T1 ; ↓T2

(b) T1 ; ↓T ′2
2. T1 <: ↓T ′2, by induction on (1-b)by (SS-losedown)

3. ↓T ′2 <: ↓T2, by (SS-gainup)

4. T1 <: ↓T2, by (SS-trans)

Case (DC-sub) Direct from premise
Lemma 12. If ↑T1 ; T2 and T2 6= Dyn, then ↑T1 <: T2

Proof. By induction on the Directed consistency rules that can take
T2 6= Dyn and T ′1 = ↑T1

Case (DC-losedown)
1. By assumption:

(a) T1 = ↓T ′1, ↑T1 ; T2

(b) ↑T ′1 ; T2

2. ↑T1 <: ↑T ′1, by (SS-losedown)

3. ↑T ′1 <: T2, by induction on (1-b)

4. ↑T1 <: T2, by (SS-trans)



Case (DC-gainup)
1. By assumption:

(a) T2 = ↑T ′2, ↑T1 ; T2

(b) ↑T1 ; T ′2

2. ↑T1 <: T ′2, by induction on (1-b)

3. T ′2 <: T2, by (SS-gainup)

4. ↑T1 <: T2, by (SS-trans)

Case (DC-sub) Direct from premise

We want to prove that a value typed as ↓T has never been
wrapped or a value typed as ↑T will never be wrapped.

Theorem 17. (No wrapping with qualifiers) If e = 〈T2 ⇐ T1〉 f
is a value and T2 6= Dyn, then T1 6= ↑T ′1 and T2 6= ↓T ′2

Proof. By contradiction

Case T1 = ↑T ′1
1. By Lemma 12, T1 <: T2.

2. However, by definition of value, T1 6<: T2.⇒⇐

Case T2 = ↓T ′2
1. By Lemma 11, T1 <: T2.

2. However, by definition of value, T1 6<: T2.⇒⇐



Size GT RCGT RCGT with ↓ RCGT with ↑
1 120.2 119.3 119.5 120.2
2 298.5 279.8 301.7 310.0
3 423.2 467.1 477.9 499.2
4 745.8 799.1 832.1 834.5
5 848.4 1017.1 1036.8 1045.8
6 993.3 1207.0 1232.8 1231.6
7 1735.0 2065.4 2091.5 2115.0
8 1900.8 2328.7 2332.0 2321.0
9 2005.1 2514.4 2529.5 2511.1

10 2246.0 2648.0 2694.2 2660.3

Table 7. Closure evaluation, No Wrapping benchmark.

Size GT RCGT
1 1360.5 1713.9
2 3590.5 4634.8
3 5434.9 5236.3
4 8632.5 8739.1
5 10282.7 10421.1
6 11638.5 11936.7
7 20605.5 20751.2
8 22417.3 23291.6
9 24179.6 25280.2

10 25458.3 26359.4

Table 8. Closure evaluation, Wrapping benchmark.

F. Microbenchmark Results
In these tables, time taken is reported in milliseconds and size
means multiples of 100,000 collection elements.

Size GT RCGT RCGT with ↓ RCGT with ↑
1 9.7 9.9 10.7 10.0
2 21.3 22.0 24.5 22.0
3 30.7 32.5 36.8 33.4
4 45.5 48.1 49.5 47.4
5 58.3 61.0 64.1 50.1
6 67.7 66.5 77.5 67.4
7 81.0 86.1 89.5 83.5
8 91.6 93.8 103.0 97.3
9 100.9 109.3 118.6 109.4

10 114.5 120.3 122.6 114.1

Table 4. Wrapper creation, Fully Typed benchmark.

Size GT RCGT RCGT with ↓ RCGT with ↑
1 442.1 584.6 586.5 642.8
2 1173.8 1541.7 1527.3 1639.5
3 1618.5 2282.8 2243.8 2429.5
4 3319.9 4367.3 4299.1 4550.0
5 3749.1 4981.4 4898.0 5215.3
6 3972.8 5654.3 5455.2 5762.1
7 9323.9 11899.2 11783.0 12331.8
8 9995.8 13016.5 12902.1 13404.6
9 10540.8 13853.1 13745.9 14194.0

10 10800.9 13971.5 13761.1 14411.5

Table 5. Wrapper creation, No Wrapping benchmark.

GT RCGT
1 530.1 706.7
2 1479.5 1958.7
3 2175.0 3099.1
4 4094.7 5427.1
5 4803.9 6319.6
6 5394.6 7220.8
7 10742.6 13388.2
8 11535.6 14966.0
9 12329.2 16201.0

10 12767.7 16720.9

Table 6. Wrapper creation, Wrapping benchmark.


