
A Megamodel for Process Tailoring and Evolution

María Cecilia Bastarrica
Comp. Science Department

Universidad de Chile
Chile

cecilia@dcc.uchile.cl

Jocelyn Simmonds
Departamento de Informática

Universidad Técnica F.
Santa María, Chile

jsimmond@inf.utfsm.cl

Luis Silvestre
Comp. Science Department

Universidad de Chile
Chile

lsilvest@dcc.uchile.cl

ABSTRACT
Companies formalize their software processes as a way of
organizing their development projects. In practice, a family
of processes is required, in order to ensure that each project
is handled appropriately. This family may be a collection of
predefined processes, but can also be generated by tailoring
a general process to a project’s context. Automated process
tailoring yields the most appropriate process for a project,
but requires formalization and tool support to be successful
– the general process, its potential variability and tailor-
ing transformations must be formalized up-front, and the
context characterizing the project must be specified. MDE
provides a formal framework for defining the models and
transformations required for automated process tailoring,
but as various types of models must be specified, evolution
of process families thus defined is hard to manage in prac-
tice, limiting the industrial adoption of this approach. To
address this problem, in this paper we propose a Megamodel
for automated process tailoring. Megamodeling provides an
integrating framework for modeling in the large, and as such,
enables a controlled evolution of a process family. We report
the application of our approach to the software development
process of a small Chilean company, showing how different
types of evolution are handled in an integrated manner.

1. INTRODUCTION
Software development companies face different kinds of

projects, each one with its own characteristics (its “con-
text”). Defining a new process for each project is economi-
cally unfeasible, an alternative is to rely on a series of prede-
fined processes [4]. However, this solution is not only subop-
timal for almost all projects (since one must manually decide
which process best “fits” the project at hand), but it is also
an expensive solution, as these processes must be evolved
consistently [5]. Defining a general process that is tailored
for each project seems to be a good trade-off between these
two approaches: here, a general process, including its po-
tential variation points, is defined, and it is adjusted to
each new project’s context. In this way, the set-up costs
are limited, and the adjustment costs are distributed among
projects [11].

Manually tailoring a general process has a series of draw-
backs: it requires a skilled process engineer, who must have
experience in process tailoring, and project managers must
be able to consistently characterize new projects [22]. In
other words, it is a labor-intensive task. Moreover, the re-
sults are not necessarily consistent, and two similar projects
may end up with different processes, and thus their per-

formance cannot be objectively compared [7]. Automated
process tailoring is not only faster, but also it yields consis-
tent results; however, it requires formalizing all the elements
involved in the tailoring process.

We use Model-driven engineering (MDE) to formalize the
tailoring process. MDE is a software development approach
that focuses on formally defining models that may be auto-
matically transformed into lower-level models and eventu-
ally into source code [23]. Its goal is to raise the abstrac-
tion level when dealing with domain-specific concepts. The
most relevant elements in MDE are models and transforma-
tions. Models are formally defined using metamodels. A
metamodel is a special type of model, one that specifies the
concepts that may be present in models conforming to that
metamodel, as well as their allowed relationships. Transfor-
mations can be thought of as programs that take models as
input and generate other models as output; admissible in-
put and output models are specified by the metamodels the
input and out models conform to.

Applying an MDE approach to process tailoring, software
processes and project contexts are formalized as models,
and process tailoring is a model-to-model (M2M) transfor-
mation [7]. Here, software process models are specified in
SPEM 2.0, using the EPF Composer1 tool. This tool allows
the graphical visualization of processes, which helps improve
process understandability. Since tailoring is a M2M trans-
formation, but the EPF Composer uses XML files as in-
put/output, we also developed an injector and extractor, a
text-to-model (T2M) and model-to-text (M2T) transforma-
tion [2], respectively. In practice, we have encountered two
types of process variation points: 1) optionality, i.e., process
elements that must either included in or excluded from the
adapted process, depending on the project’s context, and 2)
alternatives, i.e., process elements that can be implemented
in different ways, and one of these alternatives must replace
the variation point in the adapted process (also depending
on the project’s context). We have developed our own meta-
model for modeling project contexts, and we have developed
tailoring transformations using ATL [10].

We acknowledge that writing and maintaining tailoring
transformations is a complex task, so we have developed a
Higher Order Transformation (HOT) [27] that interactively
generates the tailoring transformation [24], allowing prac-
titioners to deal only with familiar concepts. Using an in-
teractive interface, the process engineer creates a Decision
Model [28], which is then processed by the HOT, generating

1EPF Composer is part of the Eclipse Process Framework
Project (http://www.eclipse.org/epf/).

the tailoring transformation. Therefore, several models and
transformations must be defined and consistently evolved
in order for our MDE approach to process tailoring to be
successful.

One way of managing these models and transformations
is through a megamodel. A megamodel is a model in itself
formed by references to models – including transformation
models – and metamodels [3]. A megamodel does not actu-
ally contain the modeling artifacts, it is a model that defines
the metadata of existing modeling artifacts that reside in a
model repository. In this work, we adopt Global Model Man-
agement (GMM) [16], the megamodeling approach proposed
by the AtlanMod team, which has developed the AtlanMod
MegaModel Management (AM3) tool, an Eclipse plugin that
implements the GMM approach to megamodeling [17]. This
tool has a well-established community of developers, and is
fully open-source.

In this paper we describe our approach for automated pro-
cess model tailoring using a megamodeling as the underlying
formalism. We describe each metamodel, model, and trans-
formation involved. We provide an industrial case study for
illustrating the megamodel definition and we describe how
this definition eases the coordinated evolution of the whole
approach.

The rest of the paper is structured as follows. Section 2
describes related work. Then, Sect. 3 presents software pro-
cess tailoring using a megamodeling approach. An industrial
case study is presented in Sect. 4 including the definition of
the megamodel and its use in process evolution. Finally, we
present some conclusions and further work in Sect. 5.

2. RELATED WORK
A software development process can vary in a number

of ways. For example, process elements like tasks, work
products and roles may be defined as optional (opt), where
which elements should be included must be decided before
starting each project. More complex types of variabilities
can also be required, such as having alternative (alt) work
products or ways of performing a task.

The specification of these kinds of variabilities is not straight-
forward, as their specification also depends on how the devel-
opment process has been formalized. As a result, there are
different proposals on how to manage variability. For exam-
ple, SPEM 2.0 defines four primitives for specifying variabil-
ity between two process elements of the same type [19]: con-
tributes, replaces, extends and extends-replaces. Instances of
these relations may override each other, and variability rela-
tions must be resolved in the presented order. This com-
plexity is why the SPEM 2.0 variability mechanisms are
rarely used in practice [14]. However, if we restrict our-
selves to opt and alt variabilities, both can be directly ex-
pressed in SPEM 2.0 – opt variability can be specified by
setting the optional attribute of the corresponding process
element, whereas alt variability can be modeled using the
replaces primitive (defining a replacement option for each
alternative).

Other process modeling formalisms like VModell-XT [9]
are limited in the type of variability they allow. VModell-
XT provides a generic process, and before starting a new
project, the project manager must decide which modules
will be included in the project’s development process, based
on what work products must be produced. This is akin to
modeling process elements as optional. This solution is lim-

ited since VModell-XT only provides a generic process, and
it does not provide a way of formally specifying alternatives.
Moreover, most of the documentation for this approach is in
German.

Taking into account the limitations of the SPEM 2.0 vari-
ability mechanisms, mainly from the understandability point
of view, Mart́ınez et al. [15] proposed vSPEM, a SPEM 2.0
extension based on OVM [21], that allows the direct speci-
fication of process variability. In this proposal, the process
engineer defines process variation points, as well as variants
that can fill the variation points. The relationship between a
variation point and its variants is a SPEM 2.0 replaces rela-
tion, and during process instantiation, each variation point
is replaced by exactly one variant. Lack of standardization
hinders the adoption of this approach and existing tool sup-
port is at an academic prototype level [13], without graphical
user interfaces.

To improve the industrial adoption of our work, it is im-
portant to use standards, which should be supported by ro-
bust tools [26]. Since SPEM 2.0 supports the types of pro-
cess variability that we have encountered in practice, and
existing tool support for it is quite robust, we have decided
to model processes along with their variabilities using SPEM
2.0 and EPF Composer following current trends [12].

3. OVERVIEW OF OUR APPROACH
The two main stakeholders in software process tailoring

are: 1) the process engineer, who is in charge of defining,
evaluating and evolving the process, and 2) the project man-
ager, who follows the tailored process during a project. We
provide two user interfaces, one for each stakeholder, that
enable their activities and that hide the complexities of the
underlying megamodel. Figure 1 shows the architecture of
our megamodel-based solution for software process model
definition, tailoring and evolution. The megamodel includes
models, their corresponding metamodels, and M2M, M2T
and T2M transformations, as well as higher order transfor-
mations. We now describe the individual components in
more detail.

3.1 User Interfaces
Process Engineer’s Interface. The company’s process en-

gineer is in charge of the Organizational Process Definition.
We use the EPF Composer tool for this task, which allows
the specification of process models in SPEM 2.0 [19], the
OMG standard for organizational process modeling. SPEM
2.0 is based on MOF and is the most popular approach
for specifying software processes [12]. The process engineer
must also indicate the variation points of the process model.

Project characteristics determine which is the most ap-
propriate process for a project, these characteristics can be
modeled as a project “context”. We have built a web-based
tool for the Organizational Context Model Definition, the pro-
cess engineer uses this tool for defining the context attributes
that affect the variable elements of a process, as well as their
potential values [20], generating the Organizational Context
XML as output.

The most challenging task the process engineer faces is the
Context Affected Elements Definition, i.e., specifying the re-
lationships between context attributes and variable process
elements. These relationships define how variability is re-
solved during the tailoring process. This is done through an
interactive tool [25], generating the Context Affected Process

Figure 1: Solution architecture: the megamodel along with the user interfaces

Figure 2: Fragment of the eSPEM MetaModel

Element Model.
Project Manager’s Interface. The project manager is in

charge of the Project Context Definition; this is done using
a tool that takes the Organizational Context XML as input
and allows her/him to choose the particular values for the
attributes of the project at hand, generating the Project Con-
text Model as output. The EPF Composer tool is used for
Project Adapted Process Visualization, allowing the project
manager to examine the tailored process that will be fol-
lowed during the project.

3.2 Megamodel
Organizational Process Model. EPF Composer can ex-

port the process model as an XML file, but this text file is
not a model, and cannot be used as an input for a trans-
formation. To remedy this, we developed an injector [2], a
T2M transformation that generates the Organizational Pro-
cess Model from the XML created by the EPF Composer.
This model conforms to eSPEM (see Fig. 2), a subset of
SPEM 2.0 that includes the concepts and relations necessary
for process tailoring. TaskUse, RoleUse, and WorkProduct-
Use represent potentially variable process elements, they
all inherit the isOptional attribute from WorkBreakDown-

Figure 3: Software Process Context MetaModel
(SPCMM)

Element, which is used to specify optionality. Alternatives
are modeled through the usedActivity association between
Activity and itself; the useKind attribute defines the type of
SPEM variability primitive (thus far, we only use the value
replaces).

Project Context Model. We have defined Software Process
Context Metamodel (SPCM) for specifying the context model
for each project (see Fig. 3). SPCM has three core con-
cepts: ContextAttribute, Dimension and ContextAttribute-
Configuration. Every element in SPCM is a subclass of the
ContextElement class, which defines name and description
attributes. ContextAttributes represent relevant project con-
text characteristics, and each one is associated to zero or
more possible ContextAttributeValues. The Project Context
Model is a ContextConfiguration, which is a set of Context-
AttributeConfigurations, where every ContextAttributeValue
corresponds to a valid ContextAttribute. Therefore, each
ContextAttributeConfiguration associates a ContextAttribute
to one possible ContextAttributeValue.

Context Affected Process Element Model. The process
engineer uses the Context Affected Elements Definition tool

Figure 4: VDMM -Variation Decision MetaModel

Figure 5: Rhiscom’s general software development process.

to establish the relationship between context attribute val-
ues and variable process elements as simple and complex
rules. These rules are formalized using a domain-specific
Decision Model, which conforms to the Variation Decision
MetaModel (VDMM) (shown in Fig. 4, and defined in [25]).
The VDMM organizes Variability Decision Models (VDM)
into three parts: 1) context elements that affect process vari-
ability (ContextElement), 2) process variation points (Vari-
abilityPointElement), and 3) configuration rules that spec-
ify how context elements affect process variability (Configu-
rationRule). Configuration rules have two subcomponents:
Condition and Conclusion. Conditions may be simple (only
one predicate), or complex (several predicates joined by log-
ical connectors). This is similar to the work by Weiss on
Decision Models [28].

Higher Order Transformation (HOT). Writing tailoring
transformations in ATL is not an easy task, even for a pro-
cess engineer [8], so we built a Higher-Order Transformation
(HOT) that automatically generates the process tailoring
transformation. This HOT is written in Java [24], and it
takes the Context Affected Process Element Model as input
and generates the Tailoring transformation as output, hiding
the complexity of the task from the process engineer.

Tailoring. The Tailoring transformation takes the Organi-
zational Process Model and a Project Context Model as inputs,
and produces a Context Adapted Process Model as output,
which also conforms to eSPEM.

Context Adapted Process Model. The tailoring process
generates the Context Adapted Process Model, but this model
cannot be directly manipulated by the project manager be-
cause it is not in a format supported by the tools that she/he
uses. To remedy this we built an extractor, a M2T trans-
formation [2] that transforms the Context Adapted Process
Model from its XMI format back into its original XML for-
mat, so that it can be imported by the EPF Composer for
visualization (see Project Adapted Process Visualization).

4. INDUSTRIAL CASE STUDY
We have defined the complete megamodel for Rhiscom, a

small Chilean software development company. Rhiscom has
around 70 employees and develops software for retail, mainly
point-of-sale applications. They started defining their de-
velopment process about five years ago, and in the past two
years they have moved towards process formalization and
automated tailoring. Figure 5 shows the general software
development process followed by Rhiscom, and Fig. 6 shows
the detail of the Requirements activity. Variation points in
these figures are highlighted as a visual aid for the reader,
this is not the standard graphical notation in EPF Com-
poser.

4.1 Megamodel Definition
Organizational Process Model. Figure 7 shows Rhiscom’s

Requirements activity modeled in EPF Composer. In Fig. 6,
the Specify Requirements task was marked as having alter-
natives, these alternatives can be seen in Fig. 7: Specify Re-
quirements in Use Cases and Specify Requirements in plain
text. Internally, these alternatives are linked to the task they
can replace.

Project Context Model. Figure 8 shows two project con-
texts: (a)“Maintenance-Adaptation”and (b)“New Develop-
ment”. The ContextConfiguration for each context is high-
lighted in Fig. 8, both “Properties” tabs show the attribute
value corresponding to the“Project Type”attribute for both
ContextConfigurations. Note that although the Organiza-
tional Context Model also has the “Team Size” attribute, it
was not considered in either configuration.

Context Affected Process Element Model. Figure 9 shows
the interface used by the process engineer to define the Con-
text Affected Process Element Model, the model generated for
tailoring the Rhiscom process is shown in Fig. 10. The Con-
figurationContent includes the ContextElements defined as
part of the Organizational Context Model, as well as the vari-

Figure 6: Rhiscom’s requirements activity.

able process elements of the Organizational Process Model.
Among these latter ones we can see the Requirements ac-
tivity, that we have identified as optional. As part of the
Configuration Rule there is a simple condition stating that
the Requirements activity must be omitted when the value
of “Project Type” is “Maintenance-Adaptation”.

Higher Order Transformation. The code fragment shown
in Fig. 11 processes the input from Fig. 9, generating helper
rules for opt and alt variation points, like the ones seen
Fig. 12. These rules, along with some bootstrapping rules,
make up the tailoring transformation.

Tailoring. The tailoring transformation defines which op-
tional process elements should be included in the adapted
process, as well as which alternatives should be implemented
(in the case of alternative variation points). Figure 12 shows
two helper rules that are part of Rhiscom’s tailoring transfor-
mation: ruleOpt1, which implements one of the rules involv-
ing the opt ional Requirements activity, and ruleAlt2, which
implements one of the rules involving the Establish Require-
ments alternative variation point. For example, ruleOpt1

states that if “Project Type” is “Maintenance-Adaptation”,
“Project Duration” is “Medium” and “Business Knowledge”
is “Known”, then the corresponding process element (in this
case, the Requirements activity) will be omitted (false) from
the adapted process, otherwise it will be included (true). On
the other hand, ruleAlt2 states that if “Project Type” is
“New-Development”, “Project Duration” is “Medium”, and
“Business Knowledge” is “Unknown”, then the Establish Re-

Figure 7: Rhiscom’s requirements process model.

quirements Baseline and Test Cases task should replace the
Establish Requirements task in the development process.

Context Adapted Process Model. After applying the tai-
loring transformation to the Maintenance-Adaptation con-
text model, we obtain the Context Adapted Process Model
shown in Fig. 13. Here we see that the Requirements activ-
ity has been omitted, as defined by the Tailoring transfor-
mation. If the New-Development context had been used as
input instead, this activity would not have been removed.

4.2 Megamodel Evolution

4.2.1 Software Process Management
Software process definition using EPF Composer is labor-

intensive, even for a small process. So taking advantage
of this investment is appealing. Changes such a adding a
new template for a work product, or changing the role in
charge of a task should be easy to carry out, as these kinds
of changes are quite frequent. Moreover, process variation
points may change over time. Managing the software pro-
cess as a model supported by a a megamodel enables these
changes. For example, if the template assigned to the Re-
quirements Document work product needs to be changed, it
can be done directly in the EPF Composer and then the in-
jector needs to be rerun. The updated Organizational Process
Model will refer to the new template for all future projects.

Having a formally defined process does not necessarily
mean that it is the most efficient or appropriate process. If
the process is analyzed with a tool such as AVISPA [6], we

(a) (b)

Figure 8: Context models for (a) “Maintenance-Adaptation” and (b) “New Development”.

Figure 9: Context Affected Element Definition

can determine whether there is an overloaded role that may
cause inefficiencies, or whether there is a role that does not
interact with other roles. In both cases, the EPF Composer
definition of the process can be modified so that overloaded
roles delegate some of their responsibilities, and that iso-
lated roles are either assigned to tasks, or removed from the
process definition.

4.2.2 Context Attribute Evolution
Context values vary for each project. In each case the

Project Context Definition should be executed in order to
regenerate the Project Context Model. Then, the Tailoring
transformation can be executed in order to obtain the Con-

text Adapted Process Model. This kind of change is not dra-
matic, but is quite frequent, so tool support is essential.

On the other hand, the Organizational Context XML may
require drastic changes such as adding, modifying or delet-
ing context attributes and/or their values. In these cases,
the Organizational Context Model Definition needs to be re-
run so that a new Organizational Context XML is generated;
this model will be used for assigning context values for all fu-
ture projects. Moreover, as the Organizational Context XML
is input to the Context Affected Elements Definition, it may
be necessary to regenerate the Context Affected Process El-
ement Model. If this model changes, the HOT must also be
rerun, so that a new version of the Tailoring transformation

Figure 10: Fragment of the Context Affected Process
Element Model.

is generated.

4.2.3 Tailoring Rule Evolution
Tailoring rules should evolve when the Context Adapted

Process Model generated by the tailoring process is not as
expected. If the problem is in the Organizational Process
Model, then the procedure described in Sect. 4.2.1 must be
followed; if it is in the Organizational Context XML, then the
procedure in Sect. 4.2.2 must be followed. However, if both
models are correct, it means that the relationship between
the two is what is incorrectly defined, and therefore the Con-
text Affected Elements Definition should be rerun and a new
Context Affected Process Element Model must be generated.
Finally, the HOT must be rerun generating the new Tailoring
transformation.

5. CONCLUSIONS
In this paper, we show that megamodeling is a feasible

solution for the definition and evolution of the model-based
elements involved in automated software process tailoring.
In this approach, the process engineer defines a general soft-
ware process, as well as variation points (optionality and
alternatives), an organizational project context model, and

public void saveConditionsOfRule(DecisionModel decisionModel,
RulesTransformation ruleTransformation[], String titleGui,
int ruleCounter){

// add a new rule to the decision model
decisionModel.addNewRule();
decisionModel.addRuleToDecisionModel();
...

// update the rule conditions for existing rules
for(int i=1;i<addArrayConditionCounter-1;i++){

// update the corresponding predicate
decisionModel.addSimpleConditionToRule(

attributeComboBox[i]....);
// .. and its logical connector
decisionModel.addLogicalConnectorToRule(

logicConnector[i]....);

// update the rule’s condition
ruleTransformation[ruleCounter].setRule(i,

attributeComboBox[i].., attributeValueComboBox[i]..);
}

// add the new condition to the decision model
decisionModel.addSimpleConditionToRule(

attributeComboBox[addArrayConditionCounter-1]...,
attributeValueComboBox[addArrayConditionCounter-1]...);

// set the new rule’s condition attribute
ruleTransformation[ruleCounter].setRule(

addArrayConditionCounter-1,
attributeComboBox[addArrayConditionCounter-1]...,
attributeValueComboBox[addArrayConditionCounter-1]....);

}

public void saveConclusionOfRule(
RulesTransformation ruleTransformation[], int ruleCounter,
String conclusionValueExt){

// set the new rule’s conclusion attribute
ruleTransformation[ruleCounter].setConclusionValue(

conclusionValueExt);
}

Figure 11: Fragment of the HOT.

helper def:ruleOpt1():Boolean =
if (thisModule.getValue(’Project Type’)

= ’Maintenance-Adaptation’
and thisModule.getValue(’Project Duration’) = ’Small’
and thisModule.getValue(’Business Knowledge’) = ’Known’)

then false
else true

endif;

helper def:ruleAlt2(tu:MM!TaskUse): MM!TaskDefinition =
if (thisModule.getValue(’Project Type’) = ’New-Development’

and thisModule.getValue(’Project Duration’) = ’Medium’
and thisModule.getValue(’Business Knowledge’)

= ’Unknown’)
then thisModule.getTaskDefinition(

’Establish Requirements Baseline and Test Cases’)
else thisModule.getTaskDefinition(tu.name)

endif;

Figure 12: Fragment of the Tailoring Transformation.

a decision model that establishes the relationship between
the two, whereas the project manager must only define the
context of the project she/he is working on. A series of
M2M, T2M and M2T transformations automate the tailor-
ing process, hiding the megamodel from our users.

We illustrated the usefulness of our approach by defin-
ing the tailoring megamodel for a small Chilean company,

Figure 13: Adapted process models for
“Maintenance-Adaptation”

which can now be used to generate new adapted processes.
We also described how typical changes to the general soft-
ware process, the organizational context model and the tai-
loring rules are now simple to carry out, since these changes
prompt user-interactions or trigger transformations in order
to maintain a consistent megamodel.

Megamodeling is an appealing approach for structuring
large MDE-based applications, and our initial results are
promising. However, tools for supporting megamodeling are
not as stable and supported as we would like them to be,
e.g., AM3 is only available through svn and it only runs
with an older version of Eclipse. We expect this to be an
accidental drawback of the approach.

6. REFERENCES
[1] R. Alarcón and P. Barceló, editors. Proc. of SCCC ’12.

IEEE Computer Society, 2012.

[2] A. Bertero, L. Silvestre, and M. C. Bastarrica.
Text-to-Model and Model-to-Text Transformations between
Software Processes and Software Process Models. In
Alarcón and Barceló [1].

[3] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez.
Modeling in the Large and Modeling in the Small. In
ECMFA ’03, pages 33–46, 2003.

[4] A. Cockburn. Selecting a Project’s Methodology. IEEE
Software, 17(4):64–71, July 2000.

[5] D. Firesmith. Creating a Project-Specific Requirements
Engineering Process. J. of Object Technology, 3(5):31–44,
2004.

[6] J. A. Hurtado Alegŕıa, M. C. Bastarrica, and A. Bergel.
AVISPA: A Tool for Analyzing Software Process Models. J.
of Softw. Evolution and Process, 2013. doi:
10.1002/smr.1578. To appear.

[7] J. A. Hurtado Alegŕıa, M. C. Bastarrica, S. F. Ochoa, and
J. Simmonds. MDE software process lines in small
companies. Journal of Systems and Software,
86(5):1153–1171, 2013.

[8] J. A. Hurtado Alegria, M. C. Bastarrica, A. Quispe, and
S. F. Ochoa. An MDE approach to software process
tailoring. In ICSSP ’11, pages 43–52, 2011.

[9] IABG. Das VModell-XT, 2004. http://v-modell.iabg.de/
index.php?option=com_frontpage&Itemid=1. Accessed
Nov. 2013.

[10] F. Jouault and I. Kurtev. Transforming Models with ATL.
In J.-M. Bruel, editor, Satellite Events at the MoDELS ’05,
volume 3844 of LNCS, pages 128–138, 2005.

[11] P. Kruchten. The Rational Unified Process: An
Introduction. Object Technology Series. Addison-Wesley
Professional, third edition, 2003.

[12] M. Kuhrmann, D. M. Fernández, and R. Steenweg.
Systematic software process development: where do we
stand today? In Münch et al. [18], pages 166–170.

[13] T. Mart́ınez-Ruiz, F. Garćıa, M. Piattini, and F. D.
Lucas-Consuegra. Process variability management in global
software development: a case study. In Münch et al. [18],
pages 46–55.

[14] T. Mart́ınez-Ruiz, F. Garćıa, M. Piattini, and J. Münch.
Modelling software process variability: an empirical study.
Software, IET, 5(2):172–187, 2011.

[15] T. Mart́ınez-Ruiz, J. Münch, F. Garćıa, and M. Piattini.
Requirements and constructors for tailoring software
processes: a systematic literature review. Software Quality
Journal, 20(1):229–260, 2012.

[16] ModelPlex Project. Deliverable D2.1.a: Global Model
Management Principles. http://docatlanmod.emn.fr/AM3/
Documentation/D2-1-a_Global_Model_
Management_Principles_v1-1.pdf, March 2008.
Accessed Nov. 2013.

[17] ModelPlex Project. Deliverable D2.1.b: Global Model
Management Supporting Tool. http://docatlanmod.emn.
fr/AM3/Documentation/D2-11-b_Global_
Model_Management_Supporting_Tool_v3-0.pdf,
October 2008. Accessed Nov. 2013.

[18] J. Münch, J. A. Lan, and H. Zhang, editors. Proc. of
ICSSP ’13. ACM, 2013.

[19] OMG. Software Process Engineering Metamodel SPEM 2.0
OMG Specification. Technical Report ptc/07-11-01, Object
Management Group, 2008.

[20] D. Ortega, L. Silvestre, M. C. Bastarrica, and S. Ochoa. A
Tool for Modeling Software Development Contexts. In
Alarcón and Barceló [1].

[21] K. Pohl, G. Böckle, and F. J. Linden. Software Product
Line Engineering. Springer, 2011.

[22] C. Rolland. Method Engineering: State-of-the-Art Survey
and Research Proposal. In SoMeT’09, pages 3–21. IOS
Press, 2009.

[23] D. C. Schmidt. Guest editor’s introduction: Model-driven
engineering. IEEE Computer, 39(2):25–31, 2006.

[24] L. Silvestre, M. C. Bastarrica, and S. F. Ochoa. HOTs for
Generating Transformations with Two Input Models. In
SCCC ’13, 2013.

[25] L. Silvestre, M. C. Bastarrica, and S. F. Ochoa. A
Model-Based Tool for Generating Software Process Model
Tailoring Transformations. In To appear in
MODELSWARD ’14, January 2014.

[26] J. Simmonds, M. C. Bastarrica, A. Quispe, and
L. Silvestre. Variability in Software Process Models:
Requirements for Adoption in Industrial Settings. In
PLEASE ’13, pages 33–36, May 2013.

[27] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin.
On the Use of Higher-Order Model Transformations. In
R. F. Paige, A. Hartman, and A. Rensink, editors,
ECMDA-FA, volume 5562 of Lecture Notes in Computer
Science, pages 18–33. Springer, 2009.

[28] D. M. Weiss, J. J. Li, J. H. Slye, T. T. Dinh-Trong, and
H. Sun. Decision-Model-Based Code Generation for SPLE.
In SPLC, pages 129–138. IEEE Computer Society, 2008.

