

Using Thinklets to Support the Team Work in Novice Software Teams

Maíra Marques, Sergio Ochoa
Computer Science Department, University of Chile

mmarques@dcc.uchile.cl, sochoa@dcc.uchile.cl

Abstract—This technical report presents in detail a set of ThinkLets that can be used to improve
teamwork in computer science students teams. The ThinkLets reported here are focused on
dealing with the three major problems that a student team can face: communication, coordination
and motivation. The main idea is to find an easy “recipe” (i.e. a ThinkLet) that can be used to
address recurrent students problems when facing a team project. The ThinkLets were used and
validated in an academic scenario, and the obtained results are being published in a scientific
article.

1. Introduction

Software engineering is an important area within industry and academia. Normally there is a high

demand for well-trained software engineers, since chips and code are embedded in almost all consumer
products. Consequently young professionals who finish their studies in Computer Science or Informatics
have many job opportunities, and the majority of them will work on software development, a human
centered process.

As a human centered process, human factors have a great impact on the process and its performance.
Although human factors have been proven to have an impact on the software development process, they are
still overlooked by researchers. One of the most important human centered processes involved is the one
that deals with the coordination of the activities and the ability to combine people skills and teamwork.

In Computer Science, particularly in software engineering, effective teamwork can mean the difference
between a positive or negative outcome of a development project. Educational institutions offering
Computer Science programs must accept the responsibility to prepare their graduate students not only in
technical issues, but also in soft skills that allow them to work efficiently in their professional careers.

After monitoring the software development in the academia for many years, the authors think that
thinkLets could be used to mitigate recurrent situations that affect teamwork. These thinkLets are activities
or processes that produce predictable results to deal with recurring collaboration problems [Kolf06]. The
empirical observation indicates that the team work is affected by recurrent communication, coordination
and motivation problems. After identifying these problems we developed and evaluated a list of thinkLets,
which was designed to deal with these problems.

2. ThinkLets

According to Briggs [Brig01] in one of the first definition of a thinkLet, he stated that, is the smallest

unit of intellectual capital required to create one repeatable, predictable pattern of thinking among people
working toward a goal. A thinkLet is a named, packaged, thinking activity that creates predictable and
repeatable pattern of collaboration among people working towards a goal. A thinkLet has three components:
Tool – the specific version of the specific hardware and software technology used to create a pattern of
thinking. Configuration – The specifics of how the hardware and software were configured to create a
pattern of interaction. Script – the sequence of events and instructions given to the group to create the
pattern of thinking.

ThinkLets thoughts of this way have huge limitations, as they tend to be technologically dependent.

mailto:mmarques@dcc.uchile.cl
mailto:sochoa@dcc.uchile.cl

Another problem is with the thinkLet definition itself. Any change on the script, tool or configuration
generates a completely new thinklet. Moreover Kolfschoten et al. [Kolf06] worked on a re-
conceptualization of thinkLets. This new thinkLet conceptualization describes the requirements to create a
certain pattern of collaboration independent of technology and its configuration. They re-defined thinkLets
in terms of its principle: tools, configuration and script, and in terms of transitions and modifiers. It gave
thinkLets the capacity to grow and change without the concern of technology and configuration.

The definition of thinkLet used in this thesis is an activity or process that produces predictable results to
deal with recurring collaboration problems in software development teams. A thinkLet can be seen as a kind
of process pattern to address collaboration problems or challenges.

We envision that a set of thinkLets, containing processes that can be used in particular situations and
work scenarios, can help promote and/or enhance teamwork. The thinkLets should help neutralize the
negative effect produced by some variables affecting communication, coordination and motivation within
the team. Based on the use of specific solutions to deal with particular communication and coordination
problems in practice, the hope is that students can improve their teamworking skills.

In the section below the thinkLets are presented in a schematic that shows the thinkLet name, the
recurring problem that the thinkLet deals with, corrective actions that can be used and useful practices to
mitigate the recurring problems. The practices mentioned here are used in various contexts of software
development methodologies: traditional development and the three major approaches of agile development
(XP, SCRUM and Crystal Family). Some of the practices are normally used in different contexts, others
than software engineering, such as business, psychology and management. A few of them were created by
the authors, grouping concepts and ideas from different areas, such as Peer Activities, Decision Making and
Public Profile. These practices are described in detail in the Annex A.

3. ThinkLets for Communication

This section presents a list of thinklets that deal with recurring communication problems. Subsection 3.1
is focused on internal communication problems and subsection 3.2 is focused on external communication
(i.e. with the user/client).

3.1. Internal Communication

Internal communication deals with the challenge of each team member to conduct effective
communication with his peers. This subsection talks about internal communication, the major recurrent
problems that were caused by it and the ThinkLets that can be used to address them.

ThinkLet:
Stage fright

Recurring Problem: There are members that are not willing to express their opinion
in public. This problem reduces the capacity of the team to generate ideas, to identify
challenges or the capacity to generate warnings during the project [Hack90].

Corrective Actions: Weekly meetings, where all team members must
report their work status (Round-Robin Meeting). According to Humphrey
[Hump96] meetings directed by a team member, where this member exerts
some kind of pressure to get everybody to speak, efficiently mitigates the
problem.

Try to generate confidence between the team members. This can be done
with Team-Building activities (games) or with some social extra project
activity. Kapp [Kapp09] research found out that the Team-Building
Workshops at the beginning of the project could guarantee a higher level of
trust and confidence between team members.

Useful Practices:

o Stand Up Meeting
o Trust
o Sit Together
o Team-Building Workshop
o Coaching

ThinkLet:
Playing dumb

Recurring Problem: In the team there are members who do not listen or take the ideas
of their peers seriously. This goes against the process of trust generation and the team
cohesion [Pfaf3].

Corrective Actions: Meetings with the only purpose of conciliation or
confrontation, whatever the need of the team members involved may be.
This kind of meeting could also involve the whole team if needed
[Whit95].

According to Page and Donelan [Page03], one solution can be to begin a
project with Team-Building Workshop. These techniques should have the
ability to analyse the capacity and skills of team members prior to
beginning the real work. With this kind of strategy the team knows in
advance how each one works best and how to avoid this kind of conflict.
Amato and Amato [Amat05] suggest conducting personality tests, such as
the MBTI (Myers-Brigg Type Indicator) prior to team formation, to
enhance the team effectiveness.

Useful Practices:

o Trust
o Sit Together
o Peer Activities
o “Done, Done”
o Collective Code Ownership
o Public Profile
o Team-Building Workshop

ThinkLet:
Team hijacking

Recurring Problem: The team relies on the knowledge and capacity of one or a few
team members only. In a project there are some points in which the
discussion/validation/ generation of ideas cannot be done because there is not enough
knowledge in just one person (or a few). Pfaff y Huddleston [Pfaf03]) defined this kind
of behaviour as a “team hijacking”

Corrective Actions: In any scope, knowledge has to be transferred; the
activities should be done at least in pairs (ex. analysis, design or
development). To make this really useful and efficient, one of the team
members must be an expert on the subject. According to Karhatsu et al.
[Karh10] the redundancy of the agile methodologies, where one member
has the ability to do the tasks of any other team member, and should be
assured by the whole team through self-management.

Peer Activities sessions to share the knowledge. It is important to clarify
that the responsibility of acquiring the transmitted knowledge is a team
member responsibility. To Page and Donelan [Page03] team members
have to know and take responsibility in the development of their own
team, always trying to increase their capacity for accomplishment.

Perform research or a spike solution lead by an expert. Pfaff y
Huddleston [Pfaf03] talk about constantly controlled interventions as
compelling ways to ensure effective practices.

According to Page y Donelan [Page03] the roles of action that each
team member has should be known to the whole team (not only formal
roles). The team should also develop a “psychological contract” between
its members at the beginning of the project, where the parameters of
what each member believes are acceptable, well stated and understood
by the whole team.

Useful Practices:

o Peer Activities
o Collective Code Ownership
o Vision
o Planning Game
o Ubiquitous Language
o Spike Solution

ThinkLet: Why
bother to answer

Recurring Problem: Team members do not answer, or not answer in time other team
member’s requests. This goes against the dynamics of teamwork and the execution of
the project itself.

Corrective Actions: Make the team behave towards written
communication in order to maintain good levels of persistence and
traceability.

On a daily basis team members must access the official communication
system of the team. This policy has to be stated and the tool selected in
the beginning of the project.

Define an answer protocol to emails or other persistent means of
communication, where the urgency is stated in the subject of the
message [Cohn09]. For example:
o FYI (No need to answer).
o Low Importance (Answer needed within the week).
o Important (Answer needed within 48 hours).
o Very Important (Answer needed within 24 hours).
o URGENT (Answer needed within 3 hours).

Useful Practices:

o Peer Activities
o Collective Code Ownership
o Trust
o Coaching

ThinkLet: Ego Recurring Problem: Members of the team with strong personalities (ego) engage in
conflict for some specific subject of the project. This kind of problem can create a
supremacy contest within the team, hampering the process of generating ideas and trust
within the team. According to Eisenhardt and Schoonhoven [Eise90] some task
conflicts could bring benefits to the project development. Jehn et al. [Jehn99] found out
that these benefits have a limit. High levels of conflict within the team can distract and
affect the final product, leading to unachieved goals.

Corrective Actions: When the scope of the conflict is of technical
nature and relevant; the client is the only person who can decide which
solution is better and give him real value. When the subject is not
relevant the team has to choose the solution itself, seeing which one fits
better with the project in terms of permanent solution. [Cohn09]

Define a work protocol where the tasks are assigned to each team
member with the technical or logical solution pre-defined. This kind of
decision should be made in a design meeting where all the team
members address challenges and what to do in the project.

Active client participation in all the stages of the project, using
techniques such as Planning Game, which are shown to be empirically
effective according to Fraser [Fras07].

Useful Practices:

o Trust
o Sit Together
o Planning Game
o Peer Activities
o Coding Standards
o Ubiquitous Language
o Collective Code Ownership

ThinkLet: I do
not belong

Recurring Problem: Some team members do not feel they belong to the team. This
kind of problem directly affects the final result of the team, because without team
cohesion, all the advantages of working in a team are lost. Synergy only happens when
the resulting work done by the team is greater than the sum of individual’s work. If the
team members do not feel they belong to the team this synergy ceases to exist.

Corrective Actions: Team meetings with the purpose of promoting
team integration and trust. One known technique is to promote meetings
where there are activities that are different from the usual ones
performed by a team [Barr05].

More frequent team meetings; short ones, with the intention of
familiarizing the team members with each other, so everyone involved
knows the skills that each possess.

Organize social activities or a shared meal [Shor08].

Useful Practices:

o Trust
o Sit Together
o Peer Activities
o Energized Work
o Team-Building Workshop

ThinkLet: Free
Riders

Recurring Problem: Some team members do not want to fully participate on the
project, so they try to emulate work. They are used to pretend to be busy, never commit
themselves to tasks and they easily let others do their work. Humphrey [Hump10] says
“nothing can be more disruptive than to have some people in a group openly getting
away with something”. Dommeyer [Domm07] defines free riders “Group members who
shirk their obligation in the hopes of benefiting from the work of others are often
referred to as social loafers or free riders”.

Corrective Actions: At the beginning of the project, a Team-Building
Workshop can help team members bond.

A team meeting with the purpose of letting this team member knows
that his action brings consequence to the whole team. The team can
threaten to kick the free rider from the team. Humphrey [Hump10]
recognizes that this kind of problem is a major threat to academic
projects, because in industries people can be fired, and the consequence
for this kind of behavior in the academia is not so severe.

Dixon and Gassenheimer [Dixo03] suggests providing students
opportunities to familiarize themselves with their group members in a
social context, away from the high pressure of the academic setting.

Useful Practices:

o Peer Review
o Team-Building Workshop
o Root Cause Analysis

3.2. Client Communication

Client communication involves the communication between the development team and the client. This
subsection introduces the major recurrent problems that can be present during a project and the ThinkLets
we can use to address them.

ThinkLet:
Client
availability

Recurring Problem: A client having real availability to communicate with the team is
a difficult goal to reach. This problem is a threat to the project, the client is an important
part of the project; he/she is the expert. It is his /her responsibility to define and clarify
key points to the project. If he/she is not available he/she can become a bottleneck for
the project, and lockout the decision-making process and validation of the project.

Corrective Actions: To establish a fixed day and time of a weekly
meeting with the client, prior to the beginning of the project. It ensures
that such time period will be available for the team; therefore, the need
for negotiation does not exist, trying to guarantee at least some
participation of the client in the project.

Define a decision relevance protocol that should be used in every
meeting. The decisions to be made and their relevance, have to be
reported to the client at least a day prior to the meeting. With this kind
of information at hand, the client can summon other people needed to
discuss the decisions that need to be acted upon. For example:

o Low Importance (Project Status and simple decisions that the technical
counterpart can easily decide).

o Important (Project Status and complex decisions where decisions
would be better made by someone else than the counterpart).

o Critical (Project Status and critical decisions where it must be someone
else other than the counterpart to do).

Useful Practices:

o Trust
o Retrospectives
o Real Customer Involvement
o Sit Together
o Informative Workspace
o Team-Building Workshop
o Kanban

ThinkLet:
Client
communication

Recurring Problem: The client is not able to effectively communicate with the team,
so he/she is not able to transmit his real needs to the team. This kind of problem can
generate anxiety among the team members because they do not understand what the
client really wants. It can cause the team to start working on something different from
what the client really needs or wants.

Corrective Actions: Call a meeting that all people involved in the
project must attend, with the purpose of defining the scope of the project
and mitigate it. The team has to gather together after this scope meeting
and debate all the points discussed. Afterwards then get back to the
client with something (a document, a user story, user case), so the client
can confirm that there are no misunderstandings among them.

Holding meetings with all the people involved in the project using agile
techniques such as: Planning Game and Divide and Conquer.

Useful Practices:

o Vision
o Planning Game
o Stories
o Estimating
o Real Customer Involvement
o Sit Together
o Ubiquitous Language

ThinkLet: You
did what I
asked, but is not
what I need

Recurring Problem: At the end of the project the client has a product that addresses
all the requisites he/she asked for, but he/she is not satisfied with the product obtained.
This can generate frustration and low morale among team members severing the
relationship between the client and the team.

Corrective Actions: At the beginning of the project the acceptance
standards must be stated by the client.

Hold at least a weekly meeting with the client, where the team presents
the project status and the product itself.

Useful Practices:

o Planning Game
o Iteration Planning
o Reporting
o Slack
o Stories
o Estimating
o Real Customer Involvement
o Sit Together
o Exploratory Testing

ThinkLet: I
know what I
want, but I do
not know why

Recurring Problem: The client knows what he/she wants to have at the end of the
project, but he/she does not know the problems trying to solve.

Corrective Actions: To focus the meeting on finding the problem in
which to solve and the context in which it belongs. Maintain this
approach until the problem and the context can be identified.

Useful Practices:

o Vision
o Planning Game
o Stories
o Real Customer Involvement

ThinkLet: I do
not know what I
want

Recurring Problem: Unjustified and constant request changes frustrate the team since
it can change the project goal and / or the scope of the project

Corrective Actions: At the beginning of the project the Vision of the
project should be well stated and the whole team should participate in
Planning Games and Estimates to guarantee that the knowledge is
spread among everyone,; team members and client.

Team members have to let the client know that changes can be done.
Though it is healthy for the project, all changes have a consequence.
With each change, a new Iteration Planning is done and probably a new
Release Planning.

Useful Practices:

o Vision
o Real Customer Involvement
o Iteration Planning
o Estimating

ThinkLet: I did
not say that

Recurring Problem: The client and / or the team do not recognize the agreement
reached in the meeting.

Corrective Actions: During the meeting the team has to guarantee that
a Ubiquitous Language is being used, so everybody is talking about the
same subject.

At every meeting, minutes should be taken and everybody involved has
to agree to what has been recorded.

Team-Building Workshops can help to break the conflict between client
and the team and help them see that they are all together in the project,
seeking the same goal.

Useful Practices:

o Meeting Minutes
o Ubiquitous Language
o Team-Building Workshop.

4. Coordination

This section shows a list of thinkLets that deal with recurring coordination problems. Subsection 4.1 is
focused on internal coordination problems and subsection 4.2 is focused on external coordination problems.

4.1. Internal Coordination

Internal coordination is the process through which the team members coordinate their own activities to
reach a common goal. Limitations in the coordination activities produce major recurrent problems. The
following table presents such problems as well as the ThinkLets that can be used to deal with them.

ThinkLet: Lone wolf Recurring Problem: There is one team member who monopolizes
project tasks. This attitude can generate a knowledge concentration
resulting in the project becoming dependent on one team member. This
can turn into a bottleneck at any moment.

Lone wolf is considered a “psychological state” in which one prefers to
work alone when making decisions and accomplishing goals [Barr05].
They also define lone wolves as people highly committed, who devote a
lot of energy to complete tasks

Corrective Actions: Be assured that the workload between team
members is equally distributed.

Have a weekly meeting of the team to evaluate what was done, where
tasks can be reassigned between team members according to each one
capacity or knowledge, taking always the workload balance in account.

According to [Barr05], “the lone wolf with some guidance could be an
ideal candidate for mentoring others who share interest in their work, and
so contribute to the team effort”.

Useful Practices:

o Trust
o Sit Together
o Ubiquitous Language
o Stand Up Meetings
o Iteration Planning
o Public Profile
o Coaching

ThinkLet:
Knowledge of a
few

Recurring Problem: The team relies on the knowledge and skill of one or a few
members of the team. The team capacity to generate ideas and make decisions fall on
just one or a few people.

Corrective Actions: Define and assign responsibilities and tasks in a
clear and explicit way.

Define a work protocol that is based on written communications (as a
wiki for instance).

Useful Practices:

o Peer Activities
o Sit Together
o Stand Up Meetings
o Coding Standards

ThinkLet:
Meetings
absence

Recurring Problem: Team members do not attend the meetings. This goes against the
knowledge transfer that all projects need. Besides the team fells that this member is not
doing their share and the commitment of the team deteriorates. As stated by Lee Iacoca
[Iaco84]: “If everybody is suffering equally, you can move a mountain. But the first time
you find someone goofing off or not carrying his share of the load, the whole thing can
be unrevealed”.

Corrective Actions: Have a conciliation meeting with the problematic
team member sometimes can be the whole team conciliation.

Social events and games (Game Theory) with the purpose of bringing
cohesion and unity to the team.

Useful Practices:

o Trust
o Energized Work
o Stand Up Meetings
o Team-Building Workshop
o Feedback

ThinkLet: I
only know my
own belly button

Recurring Problem: Team members do not know what others are doing. This cause
feelings of uncertainty among team members, and may cause some tasks to be done in
duplicity. According to Humphrey [Hump10] “Without timely and complete
communication, the team members do not know what their teammates are doing, they
cannot support each other, and they do not feel a sense of progress”.

Corrective Actions: Structured weekly team meetings, with a specific
agenda to address, such as: project status, each member’s task status,
task analysis and task reassignments (if needed).

Define a work protocol of documentation where each team member has
to write about what he/she did during the week (in a Wiki for example)
besides the existence and usage of any version control system.

Useful Practices:

o Stand up Meeting
o Informative Workspace
o Kanban
o Public Profile

ThinkLet: I do
what I think is
needed

Recurring Problem: Team members perform changes in the project that were not
assigned to him/her, or worse, not even stated by the client. Without any repercussion
analysis the final product and the work other team members are doing can be affected
by this change. During design and development phases, developers always see ways to
improve their work. These well-intentioned changes are hard to control and hard to
avoid without a defined process and plan [Robi96].

Corrective Actions: Define a protocol of work to the team, where each
member of the team has to follow and to work just on tasks previously
assigned to him.

Weekly meetings of the team to evaluate what was done and the status of
each task, and task reassignment when needed.

Useful Practices:

o Informative Workspace
o Stand-up Meeting
o No Bugs
o Collective Code Ownership
o Continuous Integration
o Test driven development
o Refactoring
o Performance optimization
o Kanban

ThinkLet: Last
minute delivery

Recurring Problem: Team members do their work but they deliver their work just
before the deadline. This is a problem to the final quality of the problem, because a task
ended just before the deadline probably will not have all the validation and tests needed
to assure the product quality.

Corrective Actions: When the project starts, the estimation technique
that will be used has to be defined. The estimation technique chosen has
to be in the mind of the team members when the estimation process
begins. When needed (scope change as an example) the estimation must
be re-evaluated. All team members must participate and agree on the
estimates to make sure that they all commit with the project.

Conduct weekly team meetings to evaluate what was done and the status
of each task, besides task reassignment when needed. To help the team
keep track of the tasks it is suggested by many authors and
methodologies (PSP, CMM, CMMI, TSP) to use a task management tool
to maintain control of the project in a simple and real manner.

Useful Practices:

o Planning Game
o Iteration Planning
o Estimating
o Stand up Meeting
o Slack

ThinkLet: I do
in my own time

Recurring Problem: Team members are not respecting the due dates of their tasks.
This increases the probability that the project will fail to be delivered to the client on the
agreed date.

Corrective Actions: Prior to the beginning of the project the estimation
technique that will be used must be defined. The chosen estimation
technique has to be in the mind of the team members when the
estimation process begins. When needed (scope change as an example)
the estimation must be re-evaluated. All team members must participate
and agree on the estimates, to make sure that they all commit to the
project.

Weekly meetings with team members who have the responsibility of
taking care of the tasks, their estimation and their real time. It is
suggested to use a management tool to help in that control.

Useful Practices:

o Planning Game
o Iteration Planning
o Estimating
o Stand up Meeting

ThinkLet: No
notes

Recurring Problem: Team members do not use any methodology or tracking device
during clients meeting. They do not take notes of the requirements, changes or requests
that the clients have. This kind of problem can affect the relationship between client and
team, because team members will start to ask the client the same questions, over and
over.

Corrective Actions: Define a documentation protocol of the project
since the beginning. The documentation should be written and updated
constantly. It is suggested by various methodologies to keep all project
documentation in a single repository where the whole team can have
access.

Choose a team member to be responsible for the documentation (if there
is no project manager). This person is responsible for taking written
meetings minutes of all the clients meetings with the team. All the
minutes should be available to the whole team for consultation.

Useful Practices:

o Planning Game
o Stories
o Real Customer Involvement
o Meeting Minutes

ThinkLet:
Where are we

Recurring Problem: Team members do not have visibility of the status of the project;
they do everything that the client asks. This kind of problem can shake up the
relationship within the team. Motivation and morale decreases and the team loose
commitment to their members, resulting in lost in productivity and quality.

Corrective Actions: Define a protocol that states that the team will
only do what the client asked formally and according to the priorities
defined by him. One typical problem occurs with performance, the team
does not have to improve performance if not formally asked and
prioritized by the client.

At the beginning of the project partial deliveries must be defined
between client and team.

The client must state at the start of the project the acceptance criteria of
the project, and as soon as the requisites are defined, the client must
prioritize them.

Useful Practices:

o Planning Game
o Iteration Planning
o Release Planning
o Informative Workspace
o Kanban

ThinkLet:
Paralysis
analysis

Recurring Problem: The team is frozen, waiting for possible solutions to a problem,
or trying to analyse and learn new technologies (paralysis by analysis). This halt of the
team can affect the time agreements.

Corrective Actions: Define in advance the amount of time that can be
spent in analysis. For example:

o 1st. Day Web search, tutorials: If the search is positive, one day of
Spike Solution / Spin Off.

o 2nd. Day: Try to make contact with someone that is an expert on the
subject.

o 3rd. Day: Evaluate the impact of change in the project strategy.

Perform an evaluation phase of the new technology together with any
initial phases of the project. This is helpful when the team knows in
advance that the project will use new technologies that no one in the
team knows.

Useful Practices:

o Test Driven Development
o Refactoring
o Spike Solutions
o Decision Making
o Coaching

ThinkLet:
Why to decide

Recurring Problem: Team members or the whole team do not have enough
confidence to make the decisions needed. This kind of problem can deeply affect the
delivery date of the project.

Corrective Actions: Define a work protocol where the task assigned to
each team member contains previously defined technology or logic. This
kind of definition can be developed in a design meeting at the beginning
of the project.

Define a protocol for making decisions within the team. If the decision is
a minor decision the team member has to decide what is the best thing to
do within the day. If he/she is not capable of making this decision, he/she
has to call their peers to help him decide what to do the following day.

Useful Practices:

o Peer Activities
o Root Cause Analysis
o Retrospectives
o Stand Up Meetings
o Decision Making
o Coaching

ThinkLet: I
decide

Recurring Problem: The team has members who make important decisions alone,
without properly analyzing or at least thinking it through beforehand. This goes against
the dynamics of the team and can put the quality of the final product at risk. There also
exist the potential possibility for having to rework the product details

Corrective Actions: Define a work protocol where the tasks assigned
to each team member already have the technology or logic needed
previously defined. This kind of definition can be done in a design
meeting usually done in the beginning of the project.

Define a decision protocol, this way the team members can have a clear
understanding of what they can decide on their own and what should
involve other team members. For example:

o Low Importance (the decision affects only the team member tasks
and do not have any integration with other tasks) – the decision can
be made by any team member alone.

o Important (the decision to be made affects other team members’
tasks) – the team has to make the decision.

o Critical (the decision transversally affects the whole project) – the
decision must be made by the team together with the client.

Useful Practices:

o Incremental Design and
Architecture
o Peer Activities
o Retrospectives
o Decision Making
o Simple Design

ThinkLet: No
sell

Recurring Problem: The team did not prepare themselves for delivering the product
to the client; so the product was sub evaluated. This problem can affect the motivation
and the morale of the team, reflecting badly in their future endeavours.

Corrective Actions: Define a delivery protocol and presentation of the
product (partial or final). For example: Demo testing.

Presentation must have all the major milestones of the project history

Presentation must answer or show all the clients questions / use cases/
stories.

All presenters must rehearse, memorize and recite the presentation
without reading anything.

Useful Practices:

o Real Customer Involvement
o Customer Reviews
o Customer Testing
o Iteration Planning
o Iteration Demo
o Ten minutes build
o Feedback
o Version Control

ThinkLet: “I”
not “us”

Recurring Problem: Team members are still acting selfish. They do not take into
account that they now have to work on a team, and act as team members. This kind of
problem reduces the team ability to generate ideas and synergy.

Corrective Actions: Meetings with the purpose that team members get
to know each other and each other’s skill.

Team meetings with the purpose of promoting team integration and
trust. One known technique is to promote meetings with activities
different from the usual ones they perform as a team [Barr05].

Extra project meetings, social meetings, sharing a meal. The idea is to let
team members bond freely. According to [Shor08]: “Something about
sharing a meal breaks down barriers and fosters team cohesiveness”.

Useful Practices:

o Energized Work
o Peer Activities
o Retrospectives
o Sit Together
o Team-Building Workshop
o Peer Review

ThinkLet:
Nobody
responsible

Recurring Problem: There is no coordination, since nobody is responsible for
anything.

Corrective Actions: Hold a Team-Building Workshop to demonstrate
to team members the importance of trust and commitment.

Rotating the coordination of the team between team members can help
the team to understand the importance of coordination and
responsibilities

Useful Practices:

o Coaching
o Team-Building Workshop

4.2. Client Coordination

Client coordination involves a set of activities that allows the development team to coordinate their
effort with the client. This subsection presents the main recurrent problems generated by client coordination
activities and the ThinkLets we can use to address them.

ThinkLet: I did
not asked that

Recurring Problem: The client or the team does not remember some requirements or
changes asked for during the project. This can be a nasty source of conflicts between
the client and the team.

Corrective Actions: Define a documentation or process protocol at the
beginning of the project. The documentation or the processes have to be
written and the documentation has to be constantly updated. It is
suggested that everything be maintained in a shared directory where the
whole team has access.

The team has to choose one responsible member for all the
documentation (if there is no project manager). This person is
responsible for taking meetings minutes, especially for those where the
client is present. All the minutes should be available to the whole team

Useful Practices: :

o Planning Game
o Stories
o Customer Review
o Real Customer Involvement
o Meeting Minutes

ThinkLet:
What problem

Recurring Problem: The client has no clear idea of the problem he/she wants to solve.
This kind of problem clashes with project implementation because the client will
probably change his/her mind and the project scope many times, until they have an idea
of what the problem is. In the meantime the relationship between client and the team
will erode.

Corrective Actions: Have a scope and definition meeting with the
client to help the client think about what he/she wants, freethinking
techniques such as Brainstorming or Leafhopper.

Define an early prototype protocol so the team can get an early feedback
of the client and change the project scope early in the project.

Useful Practices: :

o Vision
o Planning Game
o Stories
o Iteration Demo

ThinkLet:
Client decision

Recurring Problem: The client is not available to make the decision the project needs.
The delays in decision-making can affect the delivery schedule of the final product.

Corrective Actions: Maintain all communication in written format, so
it can be traced and stored.

Hold weekly meetings between the client and the team. These meetings
should be scheduled at a set day and time at the start of the project to try
and guarantee the client attendance.

Define an answer protocol to mails or other persistent means of
communication, where the urgency is stated in the subject of the
message [Cohn09]. For example:

• FYI (No need to answer).
• Low Importance (Answer needed within the week).
• Important (Answer needed within 48 hours).
• Very Important (Answer needed within 24 hours).
• Urgent (Answer needed within 3 hours).

Useful Practices:

o Real Customer Involvement
o Informative Workspace
o Sit Together
o Planning Game
o Stories
o Kanban

ThinkLet:
Change again

Recurring Problem: The client changes the requisites of the project. This can have a
huge impact on the project schedule and in the quality of the final product.

Corrective Actions: Define an analysis process of the changes
requested by the client (“Change Management”). This analysis has to
estimate the impact of the changes in the project and have to be done by
all the team members. The results of this analysis have to be reported to
the client. The team has to negotiate with the client, a new deadline or a
decrease in the number of the requirements if necessary.

Define a tool to implement a formal workflow to manage the change
management of the project.

Useful Practices: :

o Planning Game
o Stories
o Estimating
o Risk Management

ThinkLet:
Client meeting

Recurring Problem: It is difficult to establish a meeting with clients.

Corrective Actions: Hold weekly meetings between the client and the
team. These meetings should be scheduled on fixed days and times at
the start of the project to try to guarantee client attendance.

Have a Team-Building Workshop with the client to show them the
importance of their active participation on the project.

Useful Practices:

o Real Customer Involvement
o Sit Together
o Planning Game
o Team-Building Workshop

5. Motivation

This section presents a list of thinkLets that deal with recurring motivation problems. Subsection 5.1 is

focused on internal motivation problems and subsection 5.2 is focused on external motivation (i.e. with the
user/client).

5.1. Internal Motivation

Internal motivation allows a team to maintain high morale and to try guaranteeing positive development

and a strong relationship among team members. The lack of internal motivation generates major recurrent
problems within the team. This subsection presents these problems and the ThinkLets that can be used to
deal with them.

ThinkLet: I do
what I’m told

Recurring Problem: Some team members stopped contributing to the project,
choosing to only take on project tasks when assigned, and then only if the tasks are
simple, not requiring further evaluation and analysis. This kind of apathy can be easily
spread among team members, gravely affecting the advantages of teamwork.

Corrective Actions: Motivational activities with the team members
bring back cohesion to them and show that the commitment to the
project is relevant to everyone.

Remind the team of the vision and the relevance of the project.
According to Humphrey [Hump10] it is periodically necessary to
reinforce team commitment.

“Commitment is based on four requirements: should be voluntary, must
be visible, must be credible and must be owned by the people who will
do the required work”. [Hump10]. Based on that, a meeting has to be
made to evaluate why requirements are not being met and the project
manager should directly address this problem.

Useful Practices:

o Trust
o Stand Up Meetings
o Sit Together
o Energized Work
o Retrospectives
o Coaching

ThinkLet: Bad
decisions

Recurring Problem: The project manager (or the person responsible for the team) is
not making the best decisions for the team. This problem can rupture team cohesion and
consequently negatively influencing the results that the team could achieve.

Corrective Actions: Plan an open team meeting with the purpose of
dealing with the project manager problem (or the person in charge). All
members have to express their views and concerns. The project manager
has to listen and to address all the problems directed to him. It is a good
idea to have someone a human resources staff running conciliation
process.

In some cases when the project is self-directed the team may freely
choose another project manager or choose an alternate project manager.

Useful Practices:

o Trust
o Planning Game
o Stand Up Meetings
o Retrospectives
o Decision Making

ThinkLet: Us
vs. Them

Recurring Problem: Team members are unmotivated because of the constant friction
between them and the client or within the team.

Corrective Actions: Remind the team and the client of the vision and
relevance of the project. According to Humphrey [Hump10] it is
periodically necessary to reinforce team commitment.

Team-Building Workshop to break the barrier between the team and the
client

Define a documentation or process protocol at the beginning of the
project. The documentation or the processes has to be written and
constantly updated. It is suggested that everything be maintained in a
shared directory where the whole team has access.

Useful Practices:

o Vision
o Real Customer

Involvement
o Team-Building Workshop
o Coaching

5.2. Client Motivation

Client motivation is the ability that a team has to keep the client involved and satisfied with the project

in some way. The lack of this motivation generates a set of recurrent problems, which are presented in the
next table. The table also presents the ThinkLets able to deal with them.

ThinkLet:
Client
commitment

Recurring Problem: The client is not committed to the project, as he/she should be.
This complicates the whole project, because the project depends on the client to define
requisites and solve ambiguity issues during the project development.

Corrective Actions: Make the client aware of the importance of his
commitment to the project. Involve the client in the strategic decisions
of the project.

Define an answer protocol to emails or other persistent means of
communication, where the urgency is stated in the subject of the
message [Cohn09]. For example:

• FYI (No need to answer).
• Low Importance (Answer needed within the week).
• Important (Answer needed within 48 hours).
• Very Important (Answer needed within 24 hours).
• Urgent (Answer needed within 3 hours).

Hold weekly meetings between the client and the team. These meetings
should be scheduled at set a day and time at the start of the project to try
and guarantee client attendance.

Useful Practices:
o Real Customer

Involvement
o Sit Together
o Planning Game
o Stories
o Iteration Demo
o Team-Building Workshop

6. Conclusions

In this technical report we presented a list of thinkLets that can be used to deal with recurring

communication, coordination and motivation problems, that software engineering teams face during
software projects. All these thinkLets have been used in practice and the results are being reported in a
scientific paper.

7. References

[Abra02] Abrahamsson, P., O. Salo, J. Ronkainen, and J. Warsta. Agile Software Development Methods.
Technical Research Centre of Finland, Technical Report Review and Analysis, Espoo, Finland: VTT
Publications, 2002, 478.

[Alki05] Al-Kilidar, H., P. Parkin, A. Aurum, and R. Jeffery. Evaluation of Effects of Pair Work on Quality
of Designs. Software Engineering Conference. IEEE, 2005. 78-87.

[Amat05] Amato, C. H., and L. H. Amato. Enhancing Student Team Effectiveness: Application of Myers
Briggs Personality Assessment in Business Courses. Journal of Marketing Education 21, 2005, 41-
51.

[Aran10] Aranda, J. A Theory of Shared Understanding for Software Organizations. Doctorate Thesis.
University of Toronto, 2010.

[Barr05] Barr, T. F., A. L. Dixon, and J. B. Gassenheimer. Exploring the Lone Wolf Phenomenon in
Student Teams. Journal of Marketing Education (SAGE) 27, no. 1,2005, 81.

[Brig01] Briggs, R. O., G. J. De Vreede, J. F. Nunamaker Jr, and D. Tobey. ThinkLets: Achieving
Predictable, Repeatable Patterns of Group Interaction with Group Support Systems. 34 Annual
Hawaii International Conference on System Sciences. Hawaii: IEEE, 2001.

[Carb06] Carbon, R., M. Lindvall, D. Muthing, and R. Costa. Integrating Product Line Engineering and
Agile Methods: Flexible Design Up-front vs. Incremental Design. International Workshop on APLE.
IEEE, 2006.

[Canf07] Canfora, G., A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio. Evaluating Performances of
Pair Designing in Industry. Journal of Systems and Software (Elsevier) 80, no. 8, 2007, 1317-1327.

 [Chon07] Chong, J., and T. Hurlbutt. The Social Dynamics of Pair Programming." ICSE'07 - International
Conference of Software Engineering. IEEE, 2007.

[Cock04a] Cockburn, A. A Human-Powered Methodology for Small Teams. Boston: Addison Wesley,
2004.

[Cohn04b] Cohn, M. User Stories Applied: for Agile Software Development. Addison Wesley, 2004.
[Cohn09] Cohn, M. Succeeding with Agile: Software Development Using Scrum. Boston: Addison

Wesley, 2009.
[Cohn09] Cohn, M. User Stories Applied: for Agile Software Development. Addison Wesley, 2004.
[Dixo03] Dixon, A. L., and J. B. Gassenheimer. Identifying the Lone Wolf: A Team Perspective. Journal of

Personal Selling and Sales Management, no. 23, 2003, 205-219.
[Donm07] Dommeyer, C. J. Using the Diary Method to Deal with Social Loafers on the Group Projects: Its

Effects on Peer Evaluations. Group Behaviour and Attitudes. Journal of Marketing Education, no. 29,
2007, 175-188.

[Eise90] Eisenhardt, K. M., and C. Schoonhoven. Organizational Growth: Linking Founding Team,
Strategy, Environment and Growth among US. Administrative Science Quarterly 35, no. 3, 1990,
504-529.

[Frase07] Fraser, G., and F. Wotawa. Test-Case Prioritization with Model-Checkers. International Multi
Conference: Software Engineering. ACTA, 2007. 267-272.

[Geor03] George, B., and L. Williams. An Initial Investigation of Test Driven Development in Industry.
ACM Symposium on Applied Computing. ACM, 2003. 1135-1139.

[Good09] Goodpasture, J. C. Project Management the Agile Way: Making It Work in the Enterprise. J.
Ross Publishing, 2009.

[Hack90] Hackman, J. R. Groups that Work (and those that Don't): Creating conditions for effective
teamwork. San Francisco: Jossey-Bass, 1990.

[Hack05] Hackman, J. R., and R. Wageman. A Theory of Team Coaching. Academy of Management
Review (JSTOR) 30, 2005, 269-287.

[Haye11] Hayes, S., and M. Andrews. An Introduction to Agile Methods. Pace University. 2006.
http://csis.pace.edu/~marchese/CS616/Agile/IntroToAgileMethods.pdf (accessed 09 06, 2011).

[Hibb09] Hibbs, C., S. Jewett, and M. Sullivan. The Art of Lean Software Development: A Practical and
Incremental Approach. Boston: O'Reilly, 2009.

[Hiet04] Hietala, P., K. Koivunen, and E. Ropo. Analysis of Student Decision-Making in Online
Collaboration . Journal of Information Technology Impact (Loyola) 4, no. 2, 2004, 99-120.

[Huo04] Huo, M., J. Verner, L. Zhu, and M. A. Babar. Software Quality and Agile Methods. Computer
Software and Applications Conference. IEEE, 2004, 520-525.

[Hump10] Humphrey, W., and W. Tomas. Reflection on Management: How to Manage your Software
Projects, your Teams, your Boss and Yourself. Boston: Pearson Education, 2010.

[Hump96] Humphrey, W. S. Managing Technical People: Innovation, Teamwork and the Software Process.
Boston: Addison-Wesley Longman Publishing Co., 1996.

[Iaco84] Iacocca, L., and W. Novak. Iacocca: An autobiography. New York: Bantam Books, 1984.
[Jehn99] Jehn, K. A., G. B. Nothcraft, and M. A. Neale. Why Differences Make a Difference: A Field

Study of Diversity, Conflict and Performance in Workgroups. Administrative Science Quarterly
(JSTOR) 44, no. 4, 1999, 741-763.

[Kapp09] Kapp, E. Improving Student Teamwork in a Collaborative Project Based Course. (Heldref
Publications) 57, no. 3, 2009, 139-143.

[Karh10] Karhatsu, H., M. Ikonen, P. Kettunen, F. Fagerholm, and P. Abrahamsson. Building Blocks for
Self-Organizing Software Development Teams a Framework Model and Empirical Pilor Study. 2nd
International Conference on Software Technology and Engineering (ICSTE). IEEE, 2010, 290-297.

[Knib10] Kniberg, H., and M. Skarin. Kanban and Scrum: Making the Most of Both. InfoQ, 2010.
[Kolf06] Kolfschoten, G. L., R. O. Briggs, G. J. De Vreede, P. Jacobs, and J. H. Appelman. A Conceptual

Foundation of the Thinklet Concept for Collaborating Engineering. International Journal of Human-
Computer Studies (Elsevier) 64, no. 7, 2006, 611-621.

 [Kork06] Korkala, M., P. Abrahamsson, and P. Kyllonen. A Case Study of the Impact of Customer
Communication on Defects in Agile Software Development. Agile Conference. IEEE, 2006.

[Larm07] Larman, C. Agile & Iterative Development - A Manager's Guide. Boston: Addison Wesley, 2007.
[Lutz09] Lutz, B. Linguistic Challenges in Global Software Development: Lessons Learned in an

Development Division. Global Software Engineering. IEEE, 2009, 249-253.
[Math08] Mathieu, J., M. T. Maynard, T. Rapp, and L. Gilson. Effectiveness Effectiveness 1997-2007: A

Review of Recent Advancements and a Glimpse into the Future. Journal of Management (SAGE) 34,
no. 3, 2008, 410.

[Nord03] Nordberg III, M. E. Managing Code Ownership. IEEE Software (IEEE), 2003, 26-33.
[Page03] Page, D., and J. G. Donelan. Team-Building Tools for Students. The Journal of Education for

Business 78, no. 3, 2003, 125-128.
 [Park06] Parker, G., and R. Hoffman. Meeting Excellence: 33 Tools to Lead Meetings that Get Results.

Jossey-Bass, 2006.
[Pati05] Patit, J. M., and D. Wilemon. Creating High-Performing Software Development Teams. R&D

Journal (Wiley Online Library) 35, no. 4, 2005, 375-393.
[Pfaf03] Pfaff, E., and P. Huddleston. Does it Matter if I Hate Teamwork? What Impacts Student Attitudes

Toward Teamwork. Journal of Marketing Education 25, no. 1 (2003): 37.
[Risi03] Rising, L., and E. Derby. Singing the Songs of Project Experience: Patterns and Retrospectives.

The Journal of Information Technology Management 16, no. 9, 2003.
[Robi96] Robillard, P. N. Teaching Software Engineering Through a Project-Oriented Course. 10th CSEE.

Virginia Beach: IEEE, 1996. 85.
[Ruhe05] Ruhe, G., and M. O. Saliu. The Art and Science of Software Release Planning. IEEE Software

(IEEE), 2005, 47-53.

Practices

Thinking

Collaborating

Releasing

Planning

Developing

[Schw89] Schweiger, D. M., and W. R. Sandberg. The Utilization of Individual Capabilities in Group
Approaches to Strategic Decision Making. Strategic Management Journal (Wiley Online) 10, 1989,
31-43.

[Sfet06] Sfetsos, P., L. Angelis, and I. Stamelos. Investigating the Extreme Programming System - An
Empirical Study. Empirical Software Engineering (Springer), 2006, 269-301.

[Shar09] Sharp, H., H. Robinson, and M. Petre. The Role of Physical Artefacts in Agile Software
Development: Two Complimentary Perspectives. Interacting with Computers (Elsevier) 21, no. 1,
2009, 108-116.

[Shor08] Shore, J., and S. Warden. The Art of Agile Development. 2nd. Edition. O'Reilly, 2008.
[Teas02] Teasley, S. D., L. A. Covi, M. S. Krishman, and J. S. Olson. Rapid Software Development

Through Team Collocation. Transactions on Software Engineering, no. 28, 2002, 671-683.
[Tryt05] Trytten, D. A. A Design for Team Peer Code Review. SIGCSE. ACM, 2005. 455-459.
[Will00] Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries. Strengthening the Case for Pair-

Programming. Software IEEE 17, no. 4, 2000, 19-25.
[Whit95] Whitten, N. Managing Software Development Projects. New York: John Wiley & Sons, 1995.

Annex A: List of Recommended Practices

This section presents a list of practices that can be used to resolve some problems a team may face

during a project. We will borrow a definition of practices used by Aranda [Aran10] that says that practices
“are contained, repeatable, and transferable techniques used to improve some aspect of the performance of
a software organization that is pertinent to the creation of its products They are mechanisms to attack a
known software development problem, or to gain some generally useful benefit”.

The majority of the practices mentioned here are used in distinct contexts of software development
methodologies: traditional development and the three major approaches of agile development (XP, SCRUM
and Crystal Family). Some of the practices are normally used in different contexts others, than software
engineering, such as business, psychology and management. We have selected only the practices that were
proved (all of them have references) to be effective solving teamwork problems. Few of them were created
by me, grouping concepts and ideas from different areas, such as Peer Activities, Decision Making and
Public Profile. It is important to remark that this thesis does not intend to bring together everything on the
matter. In this sense, we have to agree with Aranda [Aran10] “there is an overwhelming variety of academic
disciplines that tackle these issues in different ways, and achieving mastery over any of them appears to
hinder one’s efforts for achieving mastery in one’s domain”.

The practices were classified in five categories:
Thinking Practices, Collaborating Practices, Releasing
Practices, Planning Practices and Developing
Practices. In Thinking Practices are grouped all the
practices in which team thinking and analysis are
needed. In Collaborating Practices, we find the
practices used to improve collaboration and
communication among team members and between the
team and the client. With Releasing Practices the goal
is to avoid problems and conflicts within the team or
with the client that can be related to the process of
software engineering. The Planning Practices are
practices that are used to avoid problems of
miscommunication between the team and the client,
and the Developing Practices are the ones used to solve Figure 1 - Recommended Practices

or avoid technical problems and bugs. Figure 1 shows how many practices there are in which one of the
practices categories created. The next section presents examples of practices belonging to these categories,
considering the software development scenario.

The table below classifies the Practices listed in this chapter, and their relation with the three
influencing variables: Communication, Coordination and Motivation. Here we see that most practices try to
deal with coordination problems (42), and those addressing motivational issues are few (13).

Table. Practices Classification According to the Influencing Variables

 Practices Communication Coordination Motivation

Th
in

ki
ng

Peer Activities X X
Energized Work X X X
Informative Workspace X X
Root Cause Analysis X X
Retrospectives X X X
Trust X X X

C
ol

la
bo

ra
tin

g

Sit Together X X X
Real Customer Involvement X X X
Ubiquitous Language X X
Stand Up Meetings X X X
Coding Standards X X
Iteration Demo X X
Reporting X
Team-Building Workshop X X X
Peer Review X X
Coaching X X X
Kanban X X
Decision Making X X
Public Profile X X
Feedback X

R
el

ea
sin

g

Done Done X
No Bugs X
Version Control X
Ten-Minute Build X
Continuous Integration X
Collective Code Ownership X X

Pl
an

ni
ng

Vision X X X
Stories X X X
Estimating X X
Planning Game X X X
Release Planning X
Iteration Planning X X
Slack X X
Risk Management X
Meeting Minutes X X

D
ev

el
op

in
g

Spike Solution X X
Test Driven Development X
Refactoring X
Simple Design X

 Practices Communication Coordination Motivation
Incremental Design and
Architecture X

Performance Optimization X
Customer Testing X
Customer Reviews X
Exploratory Testing X

1.1 Thinking Practices
Peer Activities. This is everything that can be done in
pairs during a software project and that has already
been proved in the literature.

Pair Programming. It involves two people working
together on one keyboard. One person writes the code
– the driver, and the other one (the navigator) has to
think. Sometimes the navigator’s work is to think of
what the driver is writing. Other times, he/she has to
think about what to do next and how their work will fit
the general design of the software. It is normally used
to increase the power of thinking and problem
resolution. It also reinforces the use of development

methodologies and decreases the number of mistakes in
the code. Chong and Hurlbutt [Chon07] pointed out important insights into collaboration with the use of
pair programming, and concluded that it can improve the mental model of team members and consequently
produce a better product. There is a variation of this practice called Side-by-Side Programming, when two
people sit close enough together to see each other’s screen easily, but work on their own assignments
[Cock04] .

Pair Designing. This involves two designers who work on the same design document, on the same
machine and at the same time: the first designer is the designated driver and writes the document, while the
designated observer reviews it. The two roles can be switched which usually happens when the driver does
not know how to proceed, and when the observer has already elaborated a candidate solution for the
problem. The observer can also accomplish different activities apart from reviewing, which might help to
reach the goal of the current task. Pair design brings confidence to the team in that the design will have
fewer mistakes and will be more suitable to the clients´ needs [Canf07]. According to Al-Kilidar et al.
[Alki05] and Canfora et al. [Canf07] pair design empirically has higher quality than solo design quality,
regarding: functionality, usability, portability and maintainability.

Pair Analysis. According to Williams et al. [Will00] it is important for the pair to collectively agree
on the development direction and strategy outlined during these stages. Additionally, it is doubtlessly true
that “two brains are better than one” when performing analysis and design. Together, pairs have been found
to consider many more possible solutions to a problem and more quickly converge on which is best to
implement”. Their constant feedback, debate, and idea exchange significantly decreases the probability of
proceeding with a bad design, improving the team efficacy.

Peer Code Review. Here one-team member revises the code written by another team member. The
idea of this task is to help team members to read code and to learn how to extract useful alternate methods
to solve a problem, improving the capacity and knowledge of the team. According to Trytten [Tryt05]:
“writing code and reading code are very different activities, and both have value”.

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 2 - Thinking Practices

Energized Work. Here, team members need to maintain their personal mental health. They go home
on time every day so they can spend time with family and friends and take part in activities that take their
mind off work. It also allows one to stay home when one is sick. It is used to guarantee that each member of
the team can accomplish his/her best and be more productive, to maintain high levels of motivation and
assure that the progress of the work being done is constant. Shore and Warden [Shor08] state, “when your
team is energized, there is a sense of excitement and camaraderie. As a group, you pay attention to detail
and look for opportunities to improve your work habits”.

Informative Workspace. The workspace provides simple and direct information about the project in
the environment (workspace) that everyone shares’, allowing everyone to know what each other is doing,
and where the team is going. Big white boards and visible hand-made graphs are typically used for this
workspace. The purpose is to keep all those interested in the project updated, without having to interrupt
someone’s job to ask. Sharp, Robbinson and Petre [Shar09] concluded that “the Wall of the Informative
Workspace is an artefact of significance and meaning to developers. The Wall shapes, mediates and
manages the life of developers. It is the symbolic means by which work is managed, by which code is
created, judged and accepted. The Wall comes with a litany and a liturgy that those present accept,
understand and respond to”.

Root Cause Analysis. It is a routine of self-evaluation that can be done by a group of team members
or the team as a whole, where they ask: what, where and why at least five times; sometimes more,
depending on how deep the problem is [Shor08]. It is used to solve problems encountered during
development without blaming anyone. As the code belongs to everyone, no one is to blame. This type of
self-evaluation helps team members maintain focus on the project and avoid relationship conflicts among
team members.

Retrospectives. This practice performs an analysis made by all team members of the work done;
what was good and what was bad. Normally it finishes with a short list of attention points that can be used
as new stories for the next iteration. It is used to help keep the team from making the same mistakes again;
to improve the development process, to make the team more cohesive and to solve problems within the
team. Retrospectives are an opportunity for the team to learn from what worked and what did not.
According to Rising and Derby [Risi03] “retrospectives provide a wonderful opportunity for capturing
knowledge as patterns to improve team knowledge and team cohesion”. It is also known as Reflection
Workshop [Cock04].

1.2 Collaborating Practices

Trust. It helps a team to work efficiently, with
confidence that each member is doing his/her best.
There are many strategies that can be applied to a team
to accomplish that goal, according to Shore and Warden
[Shor08]; there are two major types of strategies to use;
team strategies and the organizational. This practice is
normally used to improve team cohesion and to improve
the relationship between the client and the team.
Normally the performance of the team increases, as does
the final product.

The team strategies are [Shor08]:
Customer-Programmer Empathy – A recurrent

problem of customers feeling that programmers do not
care enough about their needs and deadlines and programmers often feel forced into commitments they
cannot meet. Sitting together is the most efficient way to build empathy according to Shore and Warden
[Shor08].

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 3 - Collaborating Practices

Programmer-Tester Empathy – When this kind of problem occurs programmers tend to not show
respect for the tester abilities, resulting in testers responding to programmers by becoming excessively
critical of programmers code. To avoid this, the authors suggest that the team show empathy in all areas and
occasions and to remind the team that a mistake is not one person’s problem; it is the team’s problem.

Eat Together – There is anecdotal knowledge among project managers says that team members that
spend some time outside work, can break down barriers between them, and according to Shore ”Something
about having meals breaks down barriers and fosters team cohesiveness”.

Team Continuity. – After a project ends, the team typically breaks up and all the wonderful
trust and cohesiveness that the team has formed is lost. The idea is to keep productive teams
together. It is a good idea to take advantage of this effective team as a training ground for other
teams. The organizational strategies are [Shor08]:

Show Some Hustle – The team has to show that they are doing productive work, as the
author said: “a fair day’s work for a fair day’s pay”.

Deliver on Commitments – Normally stakeholders have worked with software teams
before, they probably have plenty of war wounds from slipped schedules, unfixed defects and
wasted money. The teams have to create a plan that can be achieved, and demonstrate that they can
deliver on commitments.

Manage Problems – “When the team identifies a problem, let the stakeholders know about
it. They will appreciate your professionalism even if they did not like the problem”.

Respect Customer Goals – No matter how impossible or different a customer goal or
requirement is, the team always has to manage this important issue. The team must have the
customer at their side to show the customer alternatives, estimates and ask for priorities.

Promote the Team – Let everyone know what the team is doing. Invite everyone to the
Iteration Demo. Being open and clear about what you are doing also helps people appreciate the
team more.

Be Honest – Concentrate on looking good only to customers and stakeholders is a common
mistake. Do not do it, be honest; only count stories that are completely finished and tested. Does
not extend iterations for a few days in order to finish something. The cost of not being honest is
much bigger than the gain a team can achieve with these kinds of “white lies”.
Sit Together. It consists of putting the team members together and also the client. It requires wide

and open spaces, where there are no barriers of access between the team members. It is used to increase the
effectiveness of communication between the members of the team and also the client. The goal is to let
team members eavesdrop and get involved in other team members’ conversations so that they can
contribute with their ideas and opinions, participating directly in the conversation. Teasley et al. [Teas02]
explored the Sit Together, or radical co-location as he/she calls it in software development of automobile
companies “we believe that co-location of the project team and customers in a war room can be effective in
reducing such communication breakdowns and facilitating speedy resolutions of conflicts. By improving
communication, productivity and timeliness of the projects will also improve”.

Real Customer Involvement. This task is involves the client. The client must stay together with the
development team, and he/she should be a real team member, with full commitment. The purpose of this
practice is to guarantee that the team will have a better understanding of the project’s goal, and the clients’
problem. The knowledge needed for the project is transmitted in a direct and clear way. The team can
quickly access the client for any questions or problem; if not the software development could have to wait
for the client response. Korkala et al. [Kork06] conducted empirical research on the communication in
software development and they concluded that the rate of defects fixing in the cases where there were no
Real Customer Involvement (RCI) practice being used was two times greater than the worst case that

utilized RCI.
Ubiquitous Language. This refers to the use of a common language. The language of the

development team and the client should be unique, clear and concise. Despite the fact that developers tend
to use their own language, the language used should be the one used by the expert in the problem, normally
the client. It is important to decrease the communication failures and to let the client get more comfortable
with the communication between team members. Hayes and Andrews [Haye06] stated that the practice of
using Ubiquitous Language helps ensure everyone is working on the same concept.

Stand Up Meetings. Here, the team has a daily meeting, scheduled at the start of the project, in a
set place and time. All team members should attend and the team members have to stand up in a circle.
Members of the team have to talk about what they did yesterday, what they will do today and report if they
have something keeping them from doing their work. It is a brief meeting where everyone should be
concise and only talk about what really matters. It is very useful to make team members aware of each
other’s work, problems and challenges. According to Larman [Larm07] “It supports openness and allows
resolution of dependencies and conflicts in real time to maximize throughput”.

Coding Standard. It is the use of development guidelines that team members should follow during
the project. These guidelines should include: development practices, tools, files and archive layouts, build
conventions, error handling, assertions, design conventions. It is used to increase maintainability and
reading of the code written by others. Sfetsos et al. [Sfet06] found out that “the use of rules in writing code
emphasizes communication through the code and ensures readability of the system”.

Iteration Demo. The team presents to themselves, the client and anyone that is interested, what the
team produced on each iteration. It is useful to mitigate errors of communication, because it brings
confidence to the client and to team about what work is being done. Hibbs et al. [Hibb09] stated that
“Ending the iteration with a demo gives the development team a chance to show off what it has been doing
over the course of the iteration. It indicates to the customer that the team is dedicated to reaching
milestones and delivering promises”.

Reporting. This helps keep anyone who is interested in the project informed. The idea is to publish
various reports in the common area of the team. Some of the reports suggested by Shore y Warden [Shor08]
are: Vision (a general description of what the team is doing and why), Release and Iteration Plans, Burn Up
Chart (how much work is done and how much work needs to be done). They are very useful in gaining and
increasing the trust of the client and of any project stakeholder.

Team-building Workshop. It aims to improve the cohesion of the team. Though there are lots of
techniques written and well researched on that topic, the general idea is to place the team outside their work
place, motivating them to participate in games that show them the importance of knowing and trusting in
each other. Kapp [Kapp09] conducted research on the improvement of team cohesion by a “team building
intervention”, a short workshop where students have to play a game to get to know each other. He
compared the performance and grades from the team who had the - Team-Building Workshop with the ones
that did not have the workshop. The improvement was conclusive. The games that can be used in this kind
of event are numerous. For example: Twister, Faster Drawn, Amoeba, Obstacles, Group Story Telling
Chunks and many more. A short explanation of the game Chunks:

“Chunks” [Park06] - Prepare for the exercise by printing out a sentence and then cutting it
into eight to ten pieces. Divide your team into subgroups, as many as the number of pieces you
have. Describe the exercise to the participants like this: The sentence describes an important team
principle. The sentence is cut into pieces, and the challenge is to reassemble the sentence without
knowing in advance how it should read. The chunk that contains a period is the last chunk. Any
chunk that begins with a space is the beginning of a new word. A chunk that looks like the
beginning of a word but does not have a space in front could be the first word in the sentence. Some
of the sentences suggested by Parker and Hoffman are: There is no “I” in team. Nothing of

importance was ever done without a plan. If the going gets easy, you may be going downhill. The
authors suggest picking the sentence according to the team challenges at stake in the moment.
Peer Review. The origin of Peer Review was first written by Naur, in his research he discussed the

value of “students mutual evaluation, to supplement the normal grading of project work”. In his work he
remarked that the process of Peer Review should be a motivational technique and not a punishing
methodology. The idea of the practice of Peer Review is to let team members evaluate the performance of
other members of the team according to some criteria. To avoid retaliation the feedback of the review
should be done anonymously, in other words the team member being evaluated does not need to know who
gave him which evaluation. This practice helps the team to improve and shows the team how they are
behaving as a team so far. According to Patit and Wilemon [Pati05] “In fostering a software development
culture, Peer Reviews help foster healthy intra-group dynamics”.

Coaching. This practice intends to bring out the best of everyone in the team, trying to maximize
each one’s performance as well as that of the team. According to Hackman and Wageman [Hack05]
proposed a model of team coaching, “Team coaching being a direct interaction with a team intended to help
members make coordinated and task appropriate use of their collective resources in accomplishing team’s
work”. In this work Hackman and Wageman empirically proved the anecdote that coaching really makes a
difference in an academic environment.

Kanban. Has the goal of limiting the work that will be done by the team. The idea is to timebox
each iteration. After clients and the team create the user stories, estimate and prioritize them, the team or the
project manager has to agree to the length of the iteration, and the team according to the iteration will get
the user stories that will be done. Normally a Computer Science Kanban is made of a white board with at
least four parts. Each part shows the status of the stories being done: To Do List, Work in Progress, Test,
Release and Done. According to the teams work the story cards will be moved doing the iterations. It is
normal to state a limit of two or three story cards per status, depending on the project. The general idea of
the Kanban is to keep everyone informed of what is going on in the team so no one has to stop working to
ask questions about what each one is doing. According to Kniberg and Skarin [Knib10] Kanban “is an
approach for introducing change into an existing software development lifecycle or project management
methodology”. They state that Kanban can be used no matter what “flavour of agile methodology or
traditional methodology you are using, it will help to see through the process and have a clear vision of
what is happening in our project”.

Decision Making. This is about helping the team make a decision. There are four different
strategies for a team to make a decision: Dialectical Inquiry, Devil’s Advocacy, Consensus and Voting.
Schweiger and Sandberg [Schw89] did extensive research on the first three strategies:

o Dialectical Inquiry – uses a structural debate among two sets of group members who represent
diametrically opposed recommendations and assumptions, whereas

o Devils Advocacy uses a structured critique by one set of group members of recommendations
and assumptions developed by a second set as bases for critical examination.

o Consensus encourages open discussion among group members but does not formally structure
or encourage conflict

o Voting is a useful tool, for example, to rapidly have a compact summary of what a large group
thinks about a particular issue or anonymous voting can reduce bias of dominant individuals.
Voting was studied by Hietala et al. [Hiet04] “one way to structure decision-making”.

According to Schweiger and Sandberg [Schw89], Dialectical Inquiry should lead to higher quality
solutions than Devils Advocacy because it seeks to identify alternatives from the original set of diametric
recommendations and assumptions, whereas Devils Advocacy focuses only on what is wrong with
recommendations and assumptions, rather than on identifying suitable alternatives. Consensus could be
hard to come to and only used when there is no dominant member. Moreover, voting should be used not

only to end the Decision Making process but also to reveal the lack of consensus, and to enable the group to
explore the issue at a deeper level.

Public Profile. It consists of knowing in advance, before the project really starts, who each team
member is and also knowing their strengths, abilities, knowledge, likes, dislikes and more. It would be ideal
to have an MBTI (Myers-Brigg Type Indicator) of every member of the team, so everybody could know
how to deal with difficult situations between one another, avoiding conflict and enhancing team efficacy.
Amato and Amato [Amat05] states that knowing each other can give a new team the ability to know what to
expect from the others, so cohesion and confidence increases.

Feedback. This consists of the team constantly receiving feedback from the client and from each
team member receiving opinions of their work. It is essential that all participants stay informed of changes
in order to provide feedback regarding the results and implications of these changes and to be certain that
each change is acceptable to all project stakeholders [Pati05]. They also reported that continuous and rapid
feedback from customers not only leads to earlier problem identification, but also improves software
quality. According to Mathieu et al. [Math08] Feedback has a positive impact on motivation, interpersonal
trust and ultimately performance.

1.3 Releasing Practices

Done Done. In this practice the team has to
define at the beginning of the project what is considered
“done work”. It is very important because work done is
not only code developed; it is work developed, tested,
integrated, installed, revised (by the client) and accepted
by the client. It is used to avoid cascade errors in
integrations. It also guarantees that the team will have
functional code for the demos at the end of each
iteration, and it can result in the avoiding of
misunderstandings with the client. An example: the
client asks about the status of some functionality. A
developer can say that it is done; and the client could

ask to test it, but it is not integrated and not tested, and the client will have it to start testing days later,
leading misunderstanding between the team and the client. According to Shore and Warden “when your
stories are Done Done, you avoid unexpected batches of work and spread wrap-up and polish work
throughout the iteration” [Shor08].

No Bugs. This practice is about writing code without errors. In order to accomplish a goal such as
this, almost all the previously mentioned practices here are needed. It is used to increase the quality of the
developed software and consequently raise the trust of the client in the team. Shore and Warden [Shor08]
points out that “The agile approach is to generate fewer defects. This is not a matter of finding defects
earlier; it is a question of not generating them at all”.

Version Control. Concern it with project artefacts that should be all in one place - normally this
decision is authority. By artefacts we mean every (and any) file, archive or document that was used in the
project and all its versions. It is used to maintain a security copy of everything that was used in the project.
In addition the newer versions control systems allow team members to concurrently develop code.
Abrahamsson et al. [Abra02] points out that the role of version control is that it must be orchestrated and
run continuously, day and night, and the developers themselves have highly varying skill levels and
backgrounds.

Ten-Minute Build. This is about automating the compilation, construction and tests of the

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 4 - Releasing Practices

developed software. It is very useful to make the release phase easy and fast, and it can be done at any
given time. The automated build let the team spend their time doing what really matters, not having to
update servers, tests or any other routine that does not bring value to the project. According to Shore and
Warden [Shor08] “When your build is fast and well-automated, you build and test the whole system more
frequently. You catch bugs earlier and, as a result, spend less time debugging. You integrate your software
frequently without relying on complex background build systems, which reduces integration problems”.

Continuous Integration. It consists of integrating all the code done in the last couple of hours and
maintaining up-to date test, infrastructure and code. This allows you to avoid problems with integration,
therefore not leaving you unable to deliver to the client. When the team does, the deliveries to the client are
painless. This provides immediate feedback on newly created code, and also “reduces time that people
spend on searching for bugs and allows detection of compatibility problems early” say Huo et al. [Huo04].

Collective Code Ownership. It is a principle where each member is responsible for doing and
maintaining a code of high quality, no matter where it is. It is used to avoid breakdowns in the team when a
team member is absent for whatever reason. It also helps to increase maintainability and knowledge spread.
Nordberg [Nord03] points out “Collective Code Ownership is a lofty goal embodying altruism, positive
team dynamics, good communication, and individual accountability”. He also states “collective ownership
is infeasible without several other XP practices related to source code quality during system
implementation”.

1.4 Planning Practices

Vision. It is the disclosure of the project, its
goals, reasons, projected impact of the project and the
criteria to measure the project success. It is used to
maintain the focus of the project, making prioritization
an easy task in planning meetings. Larman [Larm07]
puts the importance of this practice “Establishing and
reiterating a common vision is frequent advice from
agile leaders. It may be seen as absurd to highlight
such an obvious idea, but in over 10 years of post-
project reviews with hundreds of project members,
Standish Group in 2002 did not find even two people
who stated the same purpose or vision for their
project”.

Stories. This is about the creation of one or two lines of description of what the development team
has to produce. It should be written in the language of the users and not in any development or complex
language. Normally they are written on index cards or post-its. The idea is to make clients and developers
understand each other and the tasks at hand. Each story should be as short as possible and as independent
from each other as possible. It is used to help clients and developers understand one another regarding tasks
to be done during the project. Mike Cohn [Cohn04] wrote a book that only talks about user stories. He
points out that they are verbal communications of the client wishes, are comprehensible, are the right size
for planning, work well for iterative development, encourage deferring detail, support opportunistic
development, encourage participatory design and build tacit knowledge.

Estimating. It is the work of estimating the time that the developers will need to code each user
story. The estimations are normally done in work days or work hours. This is an iterative process where
each developer must state his/her own estimate. If there is not a consensus on the estimation made; the
developers have to talk to each other, trying to explain the estimation they did. They have to do this until
they come to consensus in each user story. It is helpful to everyone, since the velocity and predictability of

Practices

Thinking

Collaborating

Releasing

Planning

Developing

Figure 5 - Planning Practices

the team will be based on that estimate. There are different techniques that can be used to do the
estimations, but in all of them it is important that the team makes the estimation. Everyone on the team will
be fully committed to what they estimated. Goodpasture [Good09] wrote “next to requirements, estimates
are probably the most influential factor on the predictability of the project outcomes. In the agile
methodologies, estimating is a team activity. The team both comes up with the estimate and lives with the
estimate”.

Planning Game. This consists of a meeting where the client has to explain what problem he wants
solved through the stories that he wants. During the meeting any member of the team who wishes can
create a story. Each story need to be explained and well understood by everyone attending the meeting. The
client has to prioritize all the stories. This spreads the knowledge of what the client wants and what the
team has to do. Normally the first step is a brainstorming where the client shows a picture of the whole
idea, and then the team begins to cut this whole idea up into short user stories. Sfetos et al. [Sfet06] found
out empirically that, the Planning Game was considered a good process oriented practice with technical and
social impact on programmers and managers. It is also known as Blitz Planning.

Release Planning. At this point the team has to plan which stories created at the Planning Game
will be done in each iteration. The client, the product owner and the whole team must attend this meeting.
Normally the team does a release planning for the whole project, but as time passes the stories can also
change. The product owner can reprioritize the release plan at any given moment. At this phase of the
project the stories do not need to be well defined, but they should be listed and estimated, though not
necessarily with a lot of details and tasks as needed in the Iteration Planning. This process makes the idea of
the final product clear in the mind of all the team at the time they will need to deliver the final product.
According to Ruhe [Ruhe05], release planning is an important and integral part of any type of incremental
product development.

Iteration Planning. It is a meeting planning of what the team will do in the next cycle/iteration.
Normally in the beginning of the project the time for the iteration is defined, but there is no right amount of
time for iteration. Each team has to adjust themselves to their own pace. In this meeting, at the beginning a
retrospective of the last iteration (the good and the bad things) is carried out. It is a meeting where the
developers choose which stories they will do according to their velocity and estimations previously done.
They must always take the client priorities into account. It is very helpful to guarantee a commitment by the
developers to the stories they will do. It helps the team to create a predictable and constant development
cadence. Shore and Warden [Shor08] point out that if you use iterations well, your team can have
consistent and predictable velocity so stakeholders will know what to expect and will trust that it will
deliver on its commitments.

Slack. This practice consists of adding time (slack) in the project to unforeseen events. This extra
time can be used to research solutions and new features. It is used to help the team guarantee that they will
accomplish the desired velocity and finish all the stories they committed to in the iteration time. This can be
considered a management practice that can badly influence the development of the product. The team or the
project manager has to agree on how much slack will be “safe” to consider, to guarantee that the product
will be delivered as promised and to avoid overtime of the team. Shore and Warden [Shor08] suggests that
slack must be incorporated so the team can consistently meet their commitments and maintain high morale.
He also suggests spending the slack time paying technical debt when the team has finished everything on
time.

Risk Management. This focuses on management and knowledge of project risks. There are generic
risks in all projects such as new requirements, interruptions, and team members abandoning the team,
among other things. It is used to inform the client, the stakeholders and team members about the risks the
project faces and what can be done to mitigate them. According to Shore and Warden [Shor08] the risk
management in agile software belongs to the whole team, the team must guarantee delivery on their
commitments even in the face of disruptions.

Meeting Minutes. This practice is simple. After all meetings, someone that was previously assigned
makes a summary of the major points of the meeting, and what was agreed upon among all the those
involved. Everyone involved in the project should receive the Meeting Minutes and people that participated
in the meeting should sign off on the Meeting Minutes in some way (written or electronically). According
to Lutz [Lutz09] “Minutes can be used as explicit means of documentation to ensure that common ground is
reached for comprehension, interpretation and controlling”. Meeting Minutes can avoid breakdowns
between the team and the client and within the team because it is an explicit documentation of the
commitments made by everyone in the project.

1.5 Developing Practices
Spike Solutions. It is the practice of small and

isolated experiments and research, which tries to make
better development decisions. Normally this experiment
has a maximum time deadline. It is important to clarify
technical problems and to evaluate possible solutions
without spending too much time and resources on the
matter. Mitigating the risks of something that is not within
the knowledge of the team, and helping the team to make
proper decisions is also important. Shore and Warden
[Shor08] states, “when you clarify technical questions with

well-directed, isolated experiments, you spend less time
speculating about how your program will work”.

Test Driven Development (TDD). In this technique the team member has to develop a test first and
then develop the code that passes the test. TDD has five principles: Think (think about the test), Red Bar (to
make code that fails the test), Green Bar (to make code that passes the test), Refactor (refactor the code
done to make it more clear, clean and concise), Repeat (start this process again with another functionality).
It decreases mistakes and consequently the time spent in tests and debugs, helping the team to maintain
cohesion and to achieve their goal in the time committed. George and Williams [Geor03] found out in an
empirical study that developers using TDD techniques produced higher quality code.

Refactoring. For this, the team has to look at the code done and try optimizing it in some way,
avoiding repetitions and ambiguities. It refers to a change in the structure of the code but not in the
behaviour of the code. It is used to improve the code constantly, increasing the maintainability and the
integration. It reinforces the commitment to the team to achieve the goal and the best quality, helping the
team to develop shared understanding.

Simple Design. It is a principle, to make code as simple as possible. One example can be, trying to
isolate foreign code (code that was done for people outside the project), trying to find the mistakes and
failures in design as fast as possible, trying to write code only once. It is helpful to avoid component
support problems and update problems. Shore and Warden point out: “when you create a simple design, you
avoid adding support for any features other than the ones you are working in the current iteration”. It helps
the team to maintain the focus in the stories at hand and to achieve a quality product.

Incremental Design and Architecture. The team has to try and develop exactly what they will need
in the functionality they are working with, nothing more. They do not try to anticipate anything, and do
everything step by step regardless if the team member already had seen something that could be useful in
the future or not. It helps to maintain a constant development rate and in the improvement of software
quality. “Only if a product is developed and delivered incrementally, frequent feedback can be given”
concluded Carbon et al. [Carb06].

Performance Optimization. This is about optimizing only when there is a real customer issue,
when something needs to be done such as finding out which performance a client wants or at what value is

Figure 6 - Developing Practices

Practices

Thinking

Collaboratin
g

Releasing

expected, which has to somehow be measured. It is very helpful to team members to direct their efforts to
what is important to the client. This kind of practice improves the relationship between client and the team.
Shore and Warden [Shor08] said: “when you optimize code as necessary, you invest in activities that
customers have identified as valuable over perceived benefit. …Your code is more maintainable, and you
favor simple and straightforward code over highly optimized code”.

Customer Testing. The client tells the developers which test he/she would do in each story to be
accepted. With this in hands, the developers have the entire acceptance test, and they can be included in the
development of the TDD technique. It is used to mitigate the number of logical mistakes, rules, ambiguities
and special cases of the software. According to Shore and Warden [Shor08] “reduce the number of mistakes
in your domain logic. You discuss rules in concrete, unambiguous terms and often discover special cases
you hadn’t considered”.

Customer Reviews. The client runs an extensive analysis of the software as a trial to establish how
the software will be used and how it will behave in a real environment. It also helps in uncovering errors
and logic failures of the software.

Exploratory Testing. Here, tester designed tests are conducted with the help of one of the
developers. This test does not have a pre-defined script; the idea is to follow the flow of the information.
Some methodologies used are: None, Some, All, Too Big Too Small, Just Right, Beginning, Middle, End,
Create, Read, Update, Delete, Command Injection and Data Type Attacks. It is used to reveal mistakes that
will be discovered easily by the users. It may help the team improve their own process and reduce the
number of problems in future iterations. Shore and Warden [Shor08] states: “When you use exploratory
testing, you discover information about both the software and the process used to create that software”.

	1. Introduction
	2. ThinkLets
	3. ThinkLets for Communication
	3.1. Internal Communication
	3.2. Client Communication

	4. Coordination
	4.1. Internal Coordination
	4.2. Client Coordination

	5. Motivation
	5.1. Internal Motivation
	5.2. Client Motivation

	6. Conclusions
	7. References
	Annex A: List of Recommended Practices
	1.1 Thinking Practices
	1.2 Collaborating Practices
	1.3 Releasing Practices
	1.4 Planning Practices
	1.5 Developing Practices

