
Minimal Deductive Systems for RDF

Sergio Muñoz1, Jorge Pérez2, and Claudio Gutierrez3

1 Universidad Católica de la Sant́ısima Concepción, Chile
2 Universidad de Talca, Chile

3 Universidad de Chile

Abstract This paper shows how one can do without several predicates
and keywords of the RDFS theory, obtaining a simple language which
preserves the original semantics. This approach is beneficial in at least
two directions: (a) To have a simple abstract fragment of RDF easy to
formalize and to reason about, which captures the essence of RDF; (b)
To obtain algorithmic properties of deduction and optimizations that
are relevant for particular fragments. Among our results are: the iden-
tification of a simple fragment of RDF; proof that it encompasses the
main features of RDFS; a formal semantics and a deductive system for
it; sound and complete deductive systems for their sub-fragments; and
an O(n log n) complexity bound for ground entailment in this fragment.

1 Introduction

The Resource Description Framework (RDF) is the W3C standard for repre-
senting information in the Web [15]. The motivations behind the development of
RDF by the W3C were, among the most relevant for our discussion: providing
information about Web resources and the systems that use them; to allow data
to be processed outside the particular environment in which it was created, in
a fashion that can work at Internet scale; combining data from several applica-
tions to arrive at new information; automated processing of Web information by
software agents; to provide a world-wide lingua franca for these processes. If one
would like to bring to reality this vision, the processing of RDF data at big scale
must be viable. The very future of RDF data deployment will depend critically
on the complexity of processing it.

Efficient processing of any kind of data relies on a compromise between two
parameters, namely, the size of the data and the expressiveness of the language
describing it. As we already pointed out, in the RDF case the size of the data
to be processed will be enormous, as examples like Wordnet [10], Foaf [1] and
Gene Ontology [17] show. Hence, a program to make RDF processing scalable
has to consider necessarily the issue of the expressiveness of RDF. Due to the
well known fact that the complexity of entailment using RDF data in its full
expressiveness is an untractable problem [5,6,2], such a program amounts es-
sentially to look for fragments of RDF with good behavior w.r.t. complexity of
processing. This is the broad goal of the present paper.

The full specification of RDF (that is, including RDFS vocabulary) and their
fragments has not been studied in detail. Its description is given in [14] and its

semantics is defined in [13]. The first observation that arises when dealing with
RDFS vocabulary is the difficulty to work with it. An example of this fact is that
even the rules of deduction presented in the official RDF Semantics specification
are not complete [8,6]. A second empirical observation is that several parts of
the RDFS vocabulary have been depreciated, and practice shows that there are
others that are hardly used or not being used at all. This makes it very hard for
developers to build and optimize sound implementations and algorithms, and
for theoreticians to work on this specification.

In order to illustrate the above issues, let us consider two well known RDFS
specifications: WordNet [10] and Friend of a Friend (FOAF) [1]. They both use
only a proper subset of the RDFS vocabulary. Additionally, there is a point about
the real need of explicitly declaring classes via rdfs:Class: In both specifica-
tions the triples where rdfs:Class occurs are redundant (i.e. can be deduced
from the rest of the data). Something similar happens with terms defined as
properties (rdf:Property). The FOAF schema has no blank nodes. They are
rarely used in the instances. Why use all the weight of the full RDFS specifi-
cation in these cases? Another example where these type of issues will arise, is
the SPARQL query language specification [9], which currently does not support
RDFS vocabulary. There is wide agreement that more expressive vocabularies
must be treated orthogonally to the rest of the SPARQL features. In practice,
each query will use just a small fragment of the RDFS vocabulary. For reasoning
and optimization purposes, it would be useful to have a sound and complete
theory of each such fragment which preserves the semantics of RDFS.

Among the most important directions of a program to develop solutions to
the above mentioned problems are:

– To identify a fragment which encompasses the essential features of RDF,
which preserves the original semantics, be easy to formalize and can serve
to prove results about its properties.

– To study in detail the semantics of different fragments of RDF, and give
sound and complete deductive system for each of them.

– To study the complexity of entailment for the vocabulary in general and in
these fragments in particular, and to develop algorithms for testing entail-
ment.

As for the first point, in this paper we identify a fragment of RDFS that
covers the crucial vocabulary of RDFS, prove that it preserves the original RDF
semantics, and avoids vocabulary and axiomatic information that only serves
to reason about the structure of the language itself and not about the data it
describes. We lift this structural information into the semantics of the language,
hiding them from developers and users.

Regarding the second point, we study thoroughly all fragments of the core
fragment showing that they retain the original RDFS semantics. We then study
the lattice of the theories induced by these fragments, developing minimal sound
and complete proof systems for them. We also calculate what are the minimal
sub-theories that should be considered when reasoning with restricted vocabu-
lary.

2

Finally, regarding the point of complexity of entailment, not that due to the
prospective size of RDF datasets, the exact bounds of entailment are crucial.
There are two main building blocks of RDF when considering complexity: the
built-in vocabulary and the notion of blank nodes. For the complexity of en-
tailment considering blank nodes, good (polynomial) cases can be derived from
well known databases and constraint–satisfaction results [2,7,3]. These cases con-
sider special forms of interaction between blank nodes that are very common in
practice. In any case, there is a notion of normalized proof for RDFS entail-
ment which makes it possible to treat the issue of blank nodes entailment in an
way orthogonal to the treatment of RDFS vocabulary. Using this notion, results
for blank nodes can be composed modularly with particular results for ground
RDFS fragments, that is, not considering blank nodes semantics.

For the the ground case, from a database point of view, even current known
bounds seems totally impractical. For example, the naive approach would use
closure, and estimates for the size of the closure are high: we show that in the
fragment presented, it is quadratic. Nevertheless, this bound is still impractical
from a database point of view. On these lines, we prove that entailment can be
done in time O(n log n) in the worst case, where n is the size of the source data.

The paper is organized as follows. Section 2 presents standard RDF and its
semantics and discusses the vocabulary design to conclude with a proposal of
core fragment, called ρdf. Section 3 studies the ρdf fragment. Section 4 presents
the lattice of minimal fragments of ρdf and their deductive systems. Section 5
studies complexity of entailment in the ρdf fragment. Finally, Section 6 presents
the conclusion. Proofs of all important results can be found in the Appendix.

2 RDF Semantics

Assume there are pairwise disjoint infinite sets U (RDF URI references), B
(Blank nodes), and L (Literals). Through the paper we assume U, B, and L
fixed, and for simplicity we will denote unions of these sets simply concatenating
their names. A tuple (s, p, o) ∈ UBL × U × UBL is called an RDF triple. In
this tuple, s is the subject, p the predicate, and o the object. Note that –following
recent developments [4,9]– we are omitting the old restriction stating that literals
cannot be in subject position.

Definition 1. An RDF graph (or simply a graph) is a set of RDF triples. A sub-
graph is a subset of a graph. The universe of a graph G, denoted by universe(G)
is the set of elements in UBL that occur in the triples of G. The vocabulary of
G, denoted by voc(G) is the set universe(G) ∩ UL. A graph is ground if it has
no blank nodes. In general we will use uppercase letters N,X, Y, . . . to denote
blank nodes.

In what follows we will need some technical notions. A map is a function
µ : UBL → UBL preserving URIs and literals, i.e., µ(u) = u for all u ∈ UL.
Given a graph G, we define µ(G) as the set of all (µ(s), µ(p), µ(o)) such that
(s, p, o) ∈ G. We will overload the meaning of map and speak of a map µ from

3

G1 to G2, and write µ : G1 → G2, if the map µ is such that µ(G1) is a subgraph
of G2.

2.1 Interpretations

The normative semantics for RDF graphs given in [13], and the mathematical
formalization in [8] follows standard classical treatment in logic with the notions
of model, interpretation, entailment, and so on. In those works the RDFS theory
is built incrementally from Simple, to RDF, to RDFS interpretations (or struc-
tures) and models for graphs. We present here a single notion of interpretation,
which will be used later to define the semantics of our fragment.

Definition 2. An interpretation over a vocabulary V is a tuple

I = (Res, Prop, Class,Ext, CExt, Lit, Int)

such that: (1) Res is a nonempty set of resources, called the domain or universe
of I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class ⊆ Res is a distinguished subset of Res identifying if a resource denotes
a class of resources; (4) Ext : Prop → 2Res×Res, a mapping that assigns an
extension to each property name; (5) CExt : Class → 2Res a mapping that
assigns a set of resources to every resource denoting a class; (6) Lit ⊆ Res the
set of literal values, Lit contains all plain literals in L∩ V ; (7) Int : UL∩ V →
Res ∪ Prop, the interpretation mapping, a mapping that assigns a resource or
a property name to each element of UL in V , and such that Int is the identity
for plain literals and assigns an element in Res to elements in L.

In [13,8] the notion entailment is defined using the idea of satisfaction of a
graph under certain interpretation. Intuitively a ground triple (s, p, o) in an RDF
graph G will be true under the interpretation I if p is interpreted as a property
name, s and o are interpreted as resources, and the interpretation of the pair
(s, o) belongs to the extension of the property assigned to p.

In RDF, blank nodes work as existential variables. Intuitively the triple
(X, p, o) with X ∈ B would be true under I if there exists a resource s such that
(s, p, o) is true under I. When interpreting blank nodes, an arbitrary resource
can be chosen, taking into account that the same blank node must always be
interpreted as the same resource. To formally deal with blank nodes, extensions
of the interpretation map Int are used in the following way. Let A : B → Res
be a function from blank nodes to resources; we denote IntA the extension of
Int to domain B defined by IntA(X) = A(X) when X ∈ B. The function A
captures the idea of existentiality.

The formal definition of model and entailment for RDFS in [13,8] relies on
a set of semantics restrictions imposed to interpretations in order to model the
vocabulary, and the a priori satisfaction of a set of axiomatic triples. We refer
the reader to Appendix A for a complete formal definition of the semantics of
RDFS using the notion of interpretation defined here.

4

2.2 RDFS Vocabulary

The RDF specification includes a set of reserved words, the RDFS vocabulary
(RDF Schema [14]) designed to describe relationships between resources as well
as to describe properties like attributes of resources (traditional attribute-value
pairs). Table 1 (Appendix A) shows the full RDFS vocabulary as it appears
in [13], and (in brakets) the shortcuts that we will use in this paper. This vo-
cabulary has a special interpretation (see Definition 6 in Appendix A).

Roughly speaking, this vocabulary can be divided conceptually in the follow-
ing groups:

(a) a set of properties rdfs:subPropertyOf [sp], rdfs:subClassOf [sc], rdfs:domain

[dom], rdfs:range [range] and rdf:type [type].

(b) a set of classes, rdfs: Resource, rdfs:Class, rdf:Property, rdf:XMLLiteral, rdfs:Literal,

rdfs:Datatype.

(c) Other functionalities, like a system of classes and properties to describe lists:
rdfs:Container, rdfs:ContainerMembershipProperty, rdfs:member, rdf:List, rdf:Alt,

rdf:Bag, rdf:Seq, rdf:first, rdf:rest, rdf:nil, rdf: 1, rdf: 2, . . . , and a systems for
doing reification: a class rdf:Statement together with properties rdf:subject,

rdf:predicate, rdf:object.

(d) Utility vocabulary, like rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, rdf:value,

rdfs:label.

The groups in (b), (c) and (d) have a very light semantics, essentially de-
scribing its internal function in the ontological design of the system of classes
of RDFS. Their semantics is defined by “axiomatic triples” (see Table 2 Ap-
pendix A), which are relationships among these reserved words. Note that all
axiomatic triples are “structural”, in the sense that do not refer to external data,
but talk about themselves. Much of this semantics correspond to what in stan-
dard languages is captured via typing. From a theoretical and practical point of
view it is inconvenient to expose it to users of the language because it makes the
language more difficult to understand and use, and for the criteria of simplicity
in the design of the language.

On the contrary, the group (a) is formed by predicates whose intended mean-
ing is non-trivial and is designed to relate individuals pieces of data external to
the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by real data). For example, rdfs:subClassOf[sc] is
a binary property reflexive and transitive; when combined with rdf:type[type]
specify that the type of an individual (a class) can be lifted to that of a superclass
(see rule (3b)) This group (a) forms the core of the RDF language developers
use, as practice is showing.

For all the above considerations, it is that group (a) forms a natural fragment
of RDFS to be studied in depth. Section 3 is devoted to study this fragment,
and our results will show that there are theoretical reasons that support the
convenience of this choice.

5

3 The ρdf Fragment of RDFS

Define ρdf (read rho-df, the ρ from restricted rdf) to be the following subset of
the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range}.

Definition 3. Let G be a graph over ρdf. An interpretation I is a model of G
under ρdf, denoted I |=ρdf G, iff I is an interpretation over ρdf ∪ universe(G)
that satisfies the following conditions:

1. Simple:
(a) there exists a function A : B → Res such that for each (s, p, o) ∈ G, Int(p) ∈

Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the extension of
Int using A.

2. Subproperty:
(a) Ext(Int(sp)) is transitive and reflexive over Prop

(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and Ext(x) ⊆ Ext(y)
3. Subclass:

(a) Ext(Int(sc)) is transitive and reflexive over Class

(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)
4. Typing I:

(a) x ∈ CExt(y) ⇔ (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then u ∈ CExt(y)
(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then v ∈ CExt(y)

5. Typing II:
(a) For each e ∈ ρdf, Int(e) ∈ Prop.
(b) if (x, y) ∈ Ext(Int(dom)) then x ∈ Prop and y ∈ Class.
(c) if (x, y) ∈ Ext(Int(range)) then x ∈ Prop and y ∈ Class.
(d) if (x, y) ∈ Ext(Int(type)) then y ∈ Class.

We define G entails H under ρdf, denoted G |=ρdf H, iff every model under ρdf
of G is also a model under ρdf of H.

Note that in ρdf–models we do not impose the a priori satisfaction of any ax-
iomatic triple. Indeed, ρdf–models does not satisfy any of the RDF/S axiomatic
triples in [13,8], because all of them mention RDFS vocabulary outside ρdf. This
is also the reason for the inclusion of conditions 5 in ρdf models that capture
the semantics restrictions imposed syntactically by the RDF/S axiomatic triples
(dom, dom, prop), (dom, range, class), (range, dom, prop), (range, range, class),
and (type, range, class), and the fact that every element in ρdf must be inter-
preted as a property.

The next theorem shows that this definition retains the original semantics
for the ρdf vocabulary:

Theorem 1. Let |= be the RDFS entailment defined in [13,8], and let G and H
be RDF graphs that do not mention RDFS vocabulary outside ρdf. Then

G |= H iff G |=ρdf H.

6

The issue of reflexivity. There are still some details to be refined in the the-
ory of ρdf. Note that, although in ρdf–models we do not impose the a priori
satisfaction of any triple, there are triples that are entailed by all graphs, for ex-
ample the triples (sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), and
(range, sp, range). These triples are true under every ρdf model due to the fact
that sp must be interpreted as a reflexive relation. Also, because blank nodes
work as existential variables, the triples above with the subject or the object
replaced by any blank node, are also true in every ρdf–model. The good news
is that these are the only triples in the ρdf fragment that are satisfied by every
model:

Proposition 1. Let t be an RDF triple such that |=ρdf t. Then, either t ∈
{(sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), (range, sp, range)},
or t is obtained from these triples replacing the subject or object by a blank node.

This is part of a more general phenomena, namely the presence of reflexivity
for sp and sc. We will show that reflexivity for sp and sc is orthogonal with the
rest of the semantics.

Definition 4 (Semantics without reflexivity of sp and sc). An interpre-
tation I is a reflexive–relaxed model under ρdf of a graph G, written I |=nrx

ρdf G,
iff I is a ρdf model that does not necessarily satisfy the restrictions stating that
Ext(Int(sp)) and Ext(Int(sc)) are reflexive relations over Prop and Class re-
spectively.

Theorem 2. Let G and H be ρdf graphs. Assume that H does not contain
triples of the form (x, sp, x) nor (x, sc, x) for x, y ∈ UL, nor triples of the form
(X, sp, Y) nor (X, sc, Y) for X ∈ B or Y ∈ B. Then,

G |=ρdf H iff G |=nrx
ρdf H.

Essentially the above theorem states that the only use of reflexive restrictions
in RDFS models is the entailment of triples of the form (x, sp, x), (x, sc, x), or
their existential versions replacing the subject or object by blank nodes. Another
property of |=nrx

ρdf is that it does not entail axiomatic triples:

Corollary 1. There is no triple t such that |=nrx
ρdf t.

3.1 Deductive System for ρdf Vocabulary

In what follows, we present a sound and complete deductive system for the
fragment of RDF presented in the previous section. The system is arranged in
groups of rules that captures the semantic conditions of models. In every rule,
A,B,C,X, and Y are meta-variables representing elements in UBL.

7

1. Simple:

(a) G
G′

for a map µ : G′ → G (b) G
G′

for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C) (b) (A,sp,B) (X,A,Y)

(X,B,Y)

3. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C) (b) (A,sc,B) (X,type,A)

(X,type,B)

4. Typing:

(a) (A,dom,B) (X,a,Y)
(X,type,B) (b) (A,range,B) (X,a,Y)

(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B) (C,sp,A) (X,C,Y)
(X,type,B) (b) (A,range,B) (C,sp,A) (X,C,Y)

(Y,type,B)

6. Subproperty Reflexivity:

(a) (X,A,Y)
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c) (p,sp,p) for p ∈ ρdf

(d) (A,p,X)
(A,sp,A) for p ∈ {dom, range}

7. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B) (b) (X,p,A)

(A,sc,A) for p ∈ {dom, range, type}

Note 1 (On rules (5a) and (5b)). As noted in [8,6], the set of rules presented
in [13] is not complete for RDFS entailment. The problem is produced when
a blank node X is implicitly used as standing for a property in triples like
(a, sp,X), (X, dom, b), or (X, range, c). Here we solve the problem following the
solution proposed by Marin [8] adding just two new rules of implicit typing
(rules 5 above).

An instantiation of a rule is a uniform replacement of the metavariables
occurring in the triples of the rule by elements of UBL, such that all the triples
obtained after the replacement are well formed RDF triples.

Definition 5 (Proof). Let G and H be graphs. Define G ⊢ρdf H iff there exists
a sequence of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H, and for each j
(2 ≤ j ≤ k) one of the following cases hold:

– there exists a map µ : Pj → Pj−1 (rule (1a)),
– Pj ⊆ Pj−1 (rule (1b)),

8

– there is an instantiation R
R′

of one of the rules (2)–(7), such that R ⊆ Pj−1

and Pj = Pj−1 ∪ R′.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

Theorem 3 (Soundness and completeness). The proof system ⊢ρdf is sound
and complete for |=ρdf, that is,

G ⊢ρdf H iff G |=ρdf H.

Corollary 2. Define the proof system ⊢nrx
ρdf as ⊢ρdf by droping rules of reflexivity

(rules (6) and (7)). Then

G ⊢nrx
ρdf H iff G |=nrx

ρdf H.

4 Deductive Systems for Minimal Fragments of ρdf

We will assume in the rest of the paper that the user does not redefine or enrich
the semantics of the ρdf-vocabulary. In syntactical terms this means that there
is no triple where this vocabulary occurs in subject or object positions. This
assumption is light and can be found on almost all published RDF specifications.

To begin with, the following theorem shows that for several purposes blank
nodes can be treated in an orthogonal form to ρdf vocabulary.

Theorem 4 (Normal form for proofs). Assume G ⊢ρdf H. Then there is a
proof of H from G where the rule (1) is used at most once and at the end.

Consider the lattice of fragments of ρdf in Figure 1. Given one of the frag-
ments X, by an X-graph we will understand a graph that mention ρdf vocabulary
only from X. Similarly, an X-rule is one rule (2-7) that mention ρdf vocabulary
only from X.

Theorem 5. Let X be one of the fragments of ρdf in Figure 1, and let G and
H be X-graphs. Assume that G ⊢ρdf H, then there exists a proof of H from G
which only uses X-rules and rule (1).

The above result is based in the observation that in a proof of H from G we
can avoid the following fact: a sequence of graphs Pi, Pi+1, . . . , Pi+j produced in
the proof may present vocabulary outside X, but with Pi and Pi+j X-graphs.
This fact may impose new rules obtained from the rules of ⊢ρdf by a concatena-
tion that result in a sound derivation between X-graphs. It can be shown that
the only rules obtained in this way coincide actually with X-rules. A second
point is that triples with vocabulary outside X, produced by the application
of non X-rules are not needed and can be left out of the proof of H from G.
Finally, we observe that, to be applied initially to G, any rule different of rule (1)
must be an X-rule. Then, by induction follows that a proof of H from G can be
constructed using only X-rules.

9

sc, type, d+rsc,sp,d+rsp, type, d+r

sc, d+rsc, typesp, d+r type, d+rsp, typesp, sc

sp d+rtypesc

sc, sp, type

 rdf

Figure 1. The lattice of fragments of ρdf.

Theorem 5 implies that X-rules are sound and complete for |=ρdf in fragment
X. As a direct consequence we also obtain that X-rules without considering
reflexivity rules, are sound and complete for |=nrx

ρdf in fragment X.
In what follows G|V means the subgraph induced by vocabulary V , i.e. those

triples having subject, or predicate, or object in V .

Interpolation Lemmas for RDF. Interpolation lemmas refer to lemmas express-
ing the role of vocabularies in deduction. They follows from the previous results
in this section.

Lemma 1. Let a, b, c be ground terms with b not belonging to ρdf. Then: G |=ρdf

(a, b, c) iff G|{sp,a,b,c} |=ρdf (a, b, c).

Lemma 2. Let a, b ∈ UBL, then

1. G |=ρdf (a, dom, b) iff G|dom |=ρdf (a, dom, b).
2. G |=ρdf (a, range, b) iff G|range |=ρdf (a, range, b).

In case a, b are ground, |=ρdf reduces to membership in G.

Lemma 3 (sc,sp). Let a 6= b, then

1. G |=ρdf (a, sc, b) iff G|sc |=ρdf (a, sc, b).
2. G |=ρdf (a, sp, b) iff G|sp |=ρdf (a, sp, b).

10

Lemma 4. let G |=ρdf H, then:

1. If type /∈ voc(H), then G|voc(H) |=ρdf H.
2. If type ∈ voc(H), then G|voc(H)∪{dom,range,sp} |=ρdf H.

5 Complexity of ρdf Ground Entailment

Let us introduce some notation. For a graph G and a predicate p, define Gp as
the subgraph of G consisting of the triples of the form (x, p, y) of G, and define
G∅ as the subgraph consisting of triples without ρdf vocabulary. Let G(sp) be
the directed graph whose vertices are the elements v which appear as subject or
objects in triples of Gsp, and in which (u, v) is an edge if and only if (u, sp, v) ∈
Gsp. Similar definition for G(sc).

The naive approach to test the entailment G |= H would be to consider the
closure of G and check if H is included in it. The following results show that
this procedure is too expensive in the worst case:

Theorem 6 (Size of Closure).

1. The size of the closure of G is O(|G|2).
2. The size of the closure of G is, in the worst case, no smaller than Ω(|G|2).

For the upper bound, the result follows by an analysis of the rules. The most
important point is the propagation –when applicable– of the triples of the form
(x, a, y) through the transitive closure of the G(sp) graph by the usage of rule
2(b): it can be shown that this gives at most |G∅| × |Gsp| triples. For triples
having a fixed predicate in ρdf the quadratic bound is trivial. The lower bound
follows from the example below.

Example 1 (lower bound for the closure). Consider the graph {(a1, sp, a2), . . . ,
(an, sp, an+1)}∪{(x1, a1, yn), . . . , (xn, an, yn)}. The number of triples of the clo-
sure of this graph is 2n + 1 +

∑n
k=1 k, that is order Ω(n2).

The following algorithm presents a much better procedure to check entail-
ment in this fragment.

Algorithm (Ground Entailment)
Input: G, triple (a, p, b)

1. IF p ∈ {dom, range} THEN check if (a, p, b) ∈ G.
2. IF p = sp, a 6= b, THEN check if there is a path from a to b in G(sp).
3. IF p = sc, a 6= b, THEN check if there is a path from a to b in G(sc).
4. IF p ∈ {sp, sc} and a = b, THEN check if (a, p, a) ∈ G else check all patterns

of triples in the upper part of rules 6 (for sp) and rule 7 (for sc).
5. IF p /∈ ρdf THEN check (a, p, b) ∈ G∅, if it is not

LET G(sp)∗ be the graph G(sp) with the following marks:
For each (u, v, w) ∈ G∅, if v ∈ G(sp) then mark v with (u,w).

IN Check in G(sp)∗ if there is a path from a vertex marked with (a, b)

11

which reaches p.
6. IF p = type THEN

LET G(sp)′ be the graph G(sp) with the following marks:
- For each triple (u, dom, v) ∈ Gdom, if u ∈ G(sp) mark the

vertex u with d(v).
- For each triple (a, e, y) ∈ G∅, if e ∈ G(sp), mark the

vertex e with a.
LET G(sc)′ be the graph G(sc) with the following marks:

- For vertex u marked d(v) reachable from a vertex marked a in G(sp)′,
if v ∈ G(sc) mark it blue.

- For each (a, type, w) ∈ G, if w ∈ G(sc) mark it blue.
IN Check in G(sc)′ if there is a path from a blue node to b.
Repeat this point for range instead of dom.

dom

u

a

y
e

sp

type

b
sc

sc

G(sp)′

G(sc)′
w

v

a

d(v)

Figure 2. Point 6 of the Ground Entailment Algorithm

Theorem 7. Let (a, b, c) be a ground triple. The algorithm above can be used to
test the entailment G |=ρdf (a, b, c) in time O(|G| log |G|).

Correctness and completeness of the algorithm follows from an inspection of
the rules. The algorithm uses the rules in a bottom-up fashion. There are some
subtleties in points 5 and 6. Point 5 follows from Lemma 1 and rule 2(a). The
construction of G(sp)∗ can be done in |G| log |G| steps: order G∅ and then while
traversing G(sp) do binary search on G∅. For point 6 (see Figure 2) the crucial
observation is that in G(sp)′, if there is a path from a vertex marked a to a
vertex u marked d(v), then G |= (a, u, y) for some y, and hence G |= (a, type, v)
using rule 4(a). Note that this checking takes time at most linear in |G|. From
here, it is easy to see that the checking in G(sc)′ will do the job.

Corollary 3. Let H be a ground graph. Deciding if G |=ρdf H can be done in
time O(|H| · |G| log |G|).

12

The following result shows that the above algorithm cannot be essentially
improved. The bound is obtained by coding the problem of determining if two
sets are disjoint.

Proposition 2. Testing G |= t uses in the worst case Ω(|G| log |G|) steps.

6 Conclusions

We presented a streamlined fragment of RDFS which includes all the vocabu-
lary that is relevant for describing data, avoiding vocabulary and semantics that
theoretically corresponds to the definition of the structure of the language. We
concentrated in studying the semantics, entailment, minimal proof systems, and
algorithmic properties of this relevant fragment of RDFS. Our results show a vi-
able proposal to lower the complexity of RDF data processing by using fragments
of RDFS.

In this paper we have concentrated primarily on the ground dimension of
RDF. Future work includes the refinement of our current results about the in-
terplay between blank nodes semantics and the ground part. We are also working
in the applications of our results to practical cases, as well as developing best
practices for logical design of RDF specification based on the previous consider-
ations.

References

1. Dan Brickley, Libby Miller. FOAF Vocabulary Specification. July 2005.
http://xmlns.com/foaf/0.1/

2. J. de Bruijn, E. Franconi, S. Tessaris. Logical Reconstruction of normative RDF.
In OWLED 2005, Galway, Ireland, November 2005

3. Victor Dalmau, P. G. Kolaitis, M. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite–Variable Logics Proc. 8th Int. Conf. on Principles and Prac-
tice of Constraint Programming, September, 2002.

4. Jeremy J. Carroll, Christian Bizer, Pat Hayes, Patrick Stickler, Named graphs,
Journal of Web Semantics vol. 3, 2005, pp. 247 - 267

5. C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of Semantic Web
Databases, Proceedings ACM Symposium on Principles of Database Systems
(PODS), Paris, France, June 2004, pp. 95 - 106.

6. H. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics, vol. 3, 2005.

7. Jean–Francois Baget, RDF Entailment as a Graph Homomorphism, In ISWC 2005.
8. Draltan Marin, A Formalization of RDF (Applications de la Logique á la

sémantique du web), École Polytechnique – Universidad de Chile, 2004. Techni-
cal Report Dept. Computer Science, Universidad de Chile, TR/DCC-2006-8.
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf

9. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C
Working Draft, October 2006. http://www.w3.org/TR/rdf-sparql-query/.

13

10. RDF/OWL Representation of WordNet. Edit. Mark van As-
sem, Aldo Gangemi, Guus Schreiber. Working Draft, April 2006.
http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.

11. Resource Description Framework (RDF) Model and Syntax Specification, Edit. O.
Lassila, R. Swick, Working draft, W3C, 1998.

12. RDF/XML Syntax Specification (Revised) W3C Recommendation 10 February
2004, Edit. D. Beckett

13. RDF Semantics, W3C Recommendation 10 February 2004 Edit. P. Hayes
14. RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation

10 February 2004, Edit. D. Brickley, R.V. Guha.
15. RDF Concepts and Abstract Syntax, W3C Recommendation 10 February 2004,

Edit. G. Klyne, J. J. Carroll.
16. RDF Primer, W3C Recommendation 10 February 2004, Edit. F. Manola, E. Miller,
17. Gene Ontology. http://www.geneontology.org/

A Appendix: RDFS Semantics

To easy the job of the reader, we reproduce here the definitions and axioms of
the normative semantics of RDF [13] consisting of a model theory (Definition
6) and axiomatic triples (shown in Table 1). The set rdfsV stands for the RDFS
vocabulary.

Definition 6 (cf. [13,8]). The interpretation I is an RDFS model for an RDF
graph G, denoted by I |= G, iff I is an iterpretation over vocabulary rdfsV ∪
universe(G) that satisfies the RDF/S axiomatic triples [13,8] (see Table 2) and
the following semantic conditions:

1. Simple:
(a) there exists a function A : B → Res such that for each (s, p, o) ∈ G, Int(p) ∈

Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the extension of
Int using A.

2. RDF:
(a) x ∈ Prop ⇔ (x, Int(prop)) ∈ Ext(Int(type))
(b) If l ∈ universe(G) is a typed XML literal with lexical form w, then Int(l)

is the XML literal value of w, Int(l) ∈ Lit, and (Int(l), Int(xmlLit)) ∈

Ext(Int(type)).
3. RDFS Classes:

(a) x ∈ Res ⇔ x ∈ CExt(Int(res))
(b) x ∈ Class ⇔ x ∈ CExt(Int(class))
(c) x ∈ Lit ⇔ x ∈ CExt(Int(literal))

4. RDFS Subproperty:
(a) Ext(Int(sp)) is transitive and reflexive over Prop

(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and Ext(x) ⊆ Ext(y)
5. RDFS Subclass:

(a) Ext(Int(sc)) is transitive and reflexive over Class

(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)
6. RDFS Typing:

(a) x ∈ CExt(y) ⇔ (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then u ∈ CExt(y)

14

(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then v ∈ CExt(y)

7. RDFS Additionals:

(a) if x ∈ Class then (x, Int(res)) ∈ Ext(Int(sc)).

(b) if x ∈ CExt(Int(datatype)) then (x, Int(literal)) ∈ Ext(Int(sc))

(c) if x ∈ CExt(Int(contMP)) then (x, Int(member)) ∈ Ext(Int(sp))

Now, given two graphs G and H we say that G RDFS entails H and write
G |= H, iff every RDFS model of G is also an RDFS model of H.

rdfs:Resource [res] rdf:type [type] rdfs:isDefinedBy [isDefined]
rdf:Property [prop] rdfs:domain [dom] rdfs:comment [comment]
rdfs:Class [class] rdfs:range [range] rdfs:label [label]
rdfs:Literal [literal] rdfs:subClassOf [sc] rdf:value [value]
rdfs:Datatype [datatype] rdfs:subPropertyOf [sp] rdf:nil [nil]
rdf:XMLLiteral [xmlLit] rdf:subject [subj] rdf: 1 [1]
rdfs:Container [cont] rdf:predicate [pred] rdf: 2 [2]
rdf:Statement [stat] rdf:object [obj] . . .
rdf:List [list] rdfs:member [member] rdf: i [i]
rdf:Alt [alt] rdf:first [first] . . .
rdf:Bag [bag] rdf:rest [rest]
rdf:Seq [seq] rdfs:seeAlso [seeAlso]
rdfs:ContainerMembershipProperty [contMP]

Table 1. RDF/S vocabulary [13,8] with shortcuts in brakets. The first column shows
built-in classes, second and third show built-in properties

(1) Type (2) Domain (3) Range (4) Subclass

(type, type, prop)
(subj, type, prop)
(pred, type, prop)
(obj, type, prop)
(first, type, prop)
(rest, type, prop)
(value, type, prop)
(1, type, prop)
(1, type, contMP)
(2, type, prop)
(2, type, contMP)
. . .
(i, type, prop)
(i, type, contMP)
. . .
(nil, type, prop)
(xmlLit, type, datatype)

(type, dom, res)
(dom, dom, prop)
(range, dom, prop)
(sp, dom, prop)
(sc, dom, class)
(subj, dom, stat)
(pred, dom, stat)
(obj, dom, stat)
(member, dom, res)
(first, dom, list)
(rest, dom, list)
(seeAlso, dom, res)
(isDefined, dom, res)
(comment, dom, res)
(label, dom, res)
(value, dom, res)
(1, dom, res)
(2, dom, res)
. . .
(i, dom, res)
. . .

(type, range, class)
(dom, range, class)
(range, range, class)
(sp, range, prop)
(sc, range, class)
(subj, range, res)
(pred, range, res)
(obj, range, res)
(member, range, res)
(first, range, res)
(rest, range, list)
(seeAlso, range, res)
(isDefined, range, res)
(comment, range, literal)
(label, range, literal)
(value, range, res)
(1, range, res)
(2, range, res)
. . .
(i, range, res)
. . .

(alt, sc, cont)
(bag, sc, cont)
(seq, sc, cont)
(contMP, sc, prop)
(xmlLit, sc, literal)
(datatype, sc, class)

(4) Subproperty

(isDefined, sp, seeAlso)

Table 2. RDF/S axiomatic triples [13,8]

15

B Proofs of Section 3

B.1 Proof of Theorem 1

In the proof of this Theorem we use Definition 6 of Appendix A for RDFS models.
We make the proof assuming that RDFS models do not impose conditions about
XML typed literals (this is not a serious restriction an the reader will note that
the proof can be easily extended).

Proof. ⇐) Let I be an RDFS model of G, that is, I satisfies all the conditions
in Definition 6 for G. Then, because I satisfies conditions 1, 4, 5, and 6 of Def-
inition 6, I interpret every element in ρdf as property names, and also satisfies
the axiomatic triples (dom, dom, prop), (dom, range, class), (range, dom, prop),
(range, range, class), and (type, range, class), I satisfies all conditions in
Defintion 3, and then I is also an ρdf model for G. Now I is an ρdf model
for H that satisfies all the conditions of Definition 6 and then I is also an RDFS
model for H, completing this part of the proof.

⇒) Let I = (Res, Prop, Class,Ext, CExt, Lit, Int) be a model of G under
ρdf. We will construct an RDFS model I ′ of G from I. Suppose first that for
every e ∈ rdfsV there is an element xe that will be used to interpret e in I ′, and
such that in I, Int(e) = xe for every e ∈ ρdf. Note also that, because I is an
interpretation under ρdf, then for every e ∈ rdfsV − ρdf, Int(e) is not defined.
Let Ax be the set of all RDF/S axiomatic triples [13,8] (see Table 2).

Consider the interpretation I ′ = (Res′, P rop′, Class′, Ext′, CExt′, Lit′, Int′)
constructed in the following way:

– Res′ = Res ∪ Prop ∪ {xe | e ∈ rdfsV} ∪ {l}.

– Prop′ = Prop ∪ {xe | e ∈ ρdf} ∪
{xe | (e, type, prop) ∈ Ax} ∪
{xe | (e, sp, y), (z, sp, e), (e, dom, u), or (e, range, v) ∈ Ax} ∪
{x | (x, y) ∈ Ext(xsp), (z, x) ∈ Ext(xsp),

(x, u) ∈ Ext(xdom), or (x, v) ∈ Ext(xrange)}.

– Class′ = Class ∪
{xe | (y, type, e) ∈ Ax} ∪
{xe | (e, sc, y), (z, sc, e), (u, dom, e), or (v, range, e) ∈ Ax} ∪
{x | (y, x) ∈ Ext(xtype)} ∪
{x | (x, y) ∈ Ext(xsc), (z, x) ∈ Ext(xsc),

(u, x) ∈ Ext(xdom), or (v, x) ∈ Ext(xrange)}.

– Lit′ = Lit.

– Int′ is such that for every e ∈ rdfsV, Int′(e) = xe, and Int′(x) = Int(x) in
other case.

– Ext′ is an extension function such that:
• Ext′(xtype) =

Ext(xtype) ∪
{(xs, xo) | (s, type, o) ∈ Ax} ∪
{(y, xres) | y ∈ Res′} ∪

16

{(y, xprop) | y ∈ Prop′} ∪
{(y, xclass) | y ∈ Class′} ∪
{(y, xliteral) | y ∈ Lit′} ∪
{(x, y) | x ∈ Res′, (xe, y) ∈ Ext(xdom) ∪ Ext(xrange) with e ∈ ρdf}.

• Ext′(xdom) =
Ext(xdom) ∪
{(xs, xo) | (s, dom, o) ∈ Ax}.

• Ext′(xrange) =
Ext(xrange) ∪
{(xs, xo) | (s, range, o) ∈ Ax}.

• Ext′(xsc) =
Ext(xsc) ∪
{(xs, xo) | (s, sc, o) ∈ Ax} ∪
{(x, x) | x ∈ Class′} ∪
{(y, xres) | y ∈ Class′}.

• Ext′(xsp) =
Ext(xsp) ∪
{(xs, xo) | (s, sp, o) ∈ Ax} ∪
{(x, x) | x ∈ Prop′} ∪
{(x 1, xmember), (x 2, xmember), . . .}.

• Ext′(xe) = ∅ for every xe ∈ Prop′ such that e ∈ rdfsV − ρdf.

• Ext′(x) = Ext(x) in all other cases.

– CExt′ is such that:

• CExt′(xres) = Res′.

• CExt′(xprop) = Prop′.

• CExt′(xclass) = Class′.

• CExt′(xliteral) = Lit′.

• CExt′(xcontMP) = {x 1, x 2, . . .}.

• CExt′(xdatatype) = {xxmlLit}.

• CExt′(xe) = ∅ for e ∈ {xmlLit, cont, alt, bag, seq, list, stat}.

• CExt′(x) = CExt(x) ∪ Res′ if (xe, x) ∈ Ext(xdom) ∪ Ext(xrange) for
e ∈ ρdf.

• CExt′(x) = CExt(x) in all other cases.

Note that I ′ is well defined in the sense that every one of its components is
defined in terms of notions defined before.

Now we prove that I ′ is an RDFS model of G. First note that for every
RDF/S axiomatic triple (s, p, o) we have that p ∈ ρdf. Now by the construc-
tion of Prop′, Int′, and Ext′, for every RDF/S axiomatic triple (s, p, o), we
have that Int′(p) = xp ∈ Prop′ and (Int′(s), Int′(o)) = (xs, xo) ∈ Ext′(xp) =
Ext′(Int′(p)), and then I ′ satisfies all RDF/S axiomatic triples.

17

Now we prove that I ′ satisfies also all the conditions en Definition 6. First
observe that I satisfies conditions 1, 4, 5, and 6 of Definition 6 for G, because I
is an ρdf model for G. Now for I ′:

1. Simple:

(a) For every e ∈ ρdf we have that Int′(e) = xe = Int(e) and Ext(xe) ⊆
Ext′(xe), and Int′ and Ext′ are defined exactly as Int and Ext in all
other cases. Note also that G does not mention RDFS vocabulary outside
ρdf. Then, for every triple (s, p, o) ∈ G we have that (Int′(s), Int′(o)) =
(Int(s), Int(o)) ∈ Ext(Int(p)) ⊆ Ext′(Int(p)) = Ext′(Int′(p)). Then I ′

satisfies this condition for G.

2. RDF:

(a) Note that G does not mention prop, then I does not interepret prop

and then there is no y such that (y, xprop) ∈ Int(xtype) in I. Then by
definition of Ext′(xtype) in I ′ we have that (y, xprop) ∈ Ext′(xtype) iff
y ∈ Prop′, and then I ′ satifies this condition for G.

3. RDFS Classes:

(a) By the construction of I ′ we have CExt′(xres) = Res′.
(b) By the construction of I ′ we have CExt′(xclass) = Class′.
(c) By the construction of I ′ we have CExt′(xliteral) = Lit′.

4. RDFS Subproperty:

(a) By the construction of I ′ we have that Ext′(xsp) is reflexive over Prop′.
Now, note that the only axiomatic triple that mention sp in its predi-
cate position is (isDefined, sp, seeAlso). Then we must only prove that
Ext(xsp)∪{(xisDefined, xseeAlso), (x 1, xmember), (x 2, xmember), . . .} is a tran-
sitive relation, which is a direct consequence of the fact that Ext(xsp) is
transitive and G does not mention isDefined, nor seeAlso, nor i for
any i.

(b) Let (x, y) ∈ Ext′(xsp) = Ext(xsp)∪{(xisDefined, xseeAlso)}∪ {(x, x) | x ∈
Prop′} ∪ {(x 1, xmember), (x 2, xmember), . . .}. If (x, y) ∈ Ext(xsp) then the
condition holds because I satisfies this condition. For (xisDefined, xseeAlso)
we have that xisDefined, xseeAlso ∈ Prop′ and Ext′(xisDefined) = ∅ ⊆
Ext′(xseeAlso). For (x i, xmember) we have that x i, xmember ∈ Prop′ and
Ext′(x i) = ∅ ⊆ Ext′(xmember). Finally, for (x, x) ∈ Ext′(xsp) we have
x ∈ Prop′ and then the condition holds.

5. RDFS Subclass:

(a) By the construction of I ′ we have that Ext′(xsc) is reflexive over Class′.
Now, note that for every pair of axiomatic triples (c1, sc, c2), (c3, sc, c4),
we have that c2 6= c3, and c1, c2, c3, c4 ∈ rdfsV − ρdf (see Table 2).
Consider (x, y), (y, z) ∈ Ext′(xsc): if x = y or y = z then (x, z) ∈
Ext′(xsc); if x 6= y and y 6= z, by the previous observation and the fact
that G does not mention RDFS vocabulary outside ρdf, we have that
(x, y), (y, z) ∈ Ext(xsc) and then by transitivity of Ext(xsc) we have
that (x, z) ∈ Ext(xsc) ⊆ Ext′(xsc). Finally Ext′(xsc) is a transitive
relation.

18

(b) Let (x, y) ∈ Ext′(xsc) = Ext(xsc) ∪ {(xs, xo) | (s, sc, o) ∈ Ax} ∪
{(x, x) | x ∈ Class′} ∪ {(y, xres) | for every y ∈ Class′}. If (x, y) ∈
Ext(xsc) then the condition holds because I satisfies this condition.
Now, note that for every axiomatic triple (c1, sc, c2), by the construc-
tion of I ′ we have that xc1 , xc2 ∈ Class′ and CExt′(xc1) = ∅ ex-
cept for the case when c1 is contMP or datatype. Then, if (x, y) ∈
{(xs, xo) | (s, sc, o) ∈ Ax} with x 6= xcontMP and x 6= xdatatype we have
that x, y ∈ Class′ and CExt′(x) = ∅ ⊆ CExt′(y). For the case in which
x = xcontMP we have y = xprop, and by the construction of I ′ we have
CExt′(x) = {x 1, x 2, . . .} ⊆ Prop′ = CExt′(xprop) = CExt′(y). For the
case in which x = xdatatype we have y = xclass, and by the construction of
I ′ we have CExt′(x) = {xxmlLit} ⊆ Class′ = CExt′(xclass) = CExt′(y).
If (x, y) ∈ {(y, xres) | y ∈ Class′} we have that x, y = xres ∈ Class′, and
by the construction of I ′, CExt′(x) ⊆ Res′ = CExt′(xres) = CExt′(y)
(note that Res′ is a superset of Prop′, Class′, and Lit′, and that in
I for every x ∈ Class we have CExt(x) ⊆ Res). Finally, if (x, y) ∈
{(x, x) | x ∈ Class′} then x = y ∈ Class′ and CExt′(x) ⊆ CExt′(y),
completing the proof that I ′ satisfies this condition.

6. RDFS Typing:
(a) (⇒) Let x ∈ CExt′(y), we have several cases: First note that y 6= xe

for every e ∈ {xmlLit, cont, alt, bag, seq, list, stat} because in these
cases CExt′(y) = ∅. If y = xe for e ∈ {res, prop, class, literal} then
we have (x, y) ∈ Ext′(xtype) by the construction of Ext′(xtype) in I ′. If
y = xcontMP then x = x i for some i, and because for every i there is an
axiomatic triple (i, type, contMP), we have that (x, y) ∈ Ext′(xtype).
If y = xdatatype then x = xxmlLit, and because there is an axiomatic
triple (xmlLit, type, datatype), we have that (x, y) ∈ Ext′(xtype). Now
if y is such that (xe, y) ∈ Ext(xdom) ∪ Ext(xrange) for e ∈ ρdf, then
x ∈ CExt′(y) = Res′ and then by the construction of Ext′(xtype) we
have (x, y) ∈ Ext′(xtype). In other case CExt′(y) = CExt(y) and then,
because I satisfies this condition, we have that (x, y) ∈ Ext(xtype) ⊆
Ext′(xtype).
(⇐) Now, if we consider (x, y) ∈ Ext′(xtype), we have several cases. If
(x, y) ∈ {(y, xres) | y ∈ Res′}∪{(y, xclass) | y ∈ Class′}∪{(y, xprop) | y ∈
Prop′} ∪ {(y, xliteral) | y ∈ Lit′} then by the construction of I ′ we
have x ∈ CExt′(y). If (x, y) ∈ Ext(xtype) then, because I satisfies this
condition and G does not mentions RDFS vocabulary outside ρdf we
have x ∈ CExt(y) ⊆ CExt′(y). If (x, y) ∈ {(xs, xo) | (s, type, o) ∈
Ax} then by the construction of Prop′, CExt′(xprop), CExt′(xcontMP),
and CExt′(xxmlLit), and the specific axiomatic triples that have type

as predicate (see Table 2), we have x ∈ CExt′(y). If (x, y) is such that
(xe, y) ∈ Ext(xdom) ∪ Ext(xrange) with e ∈ ρdf, we have by construction
of CExt′ that CExt′(y) = Res′ and then because x ∈ Res′ we have
x ∈ CExt′(y), completing the proof.

(b) Let (x, y) ∈ Ext′(xdom) and (u, v) ∈ Ext′(x). First note that x 6= xe for
every e ∈ rdfsV− ρdf with xe ∈ Prop′, because in these cases Ext′(x) =

19

∅. Also note that if (x, y) ∈ Ext(xdom) and (u, v) ∈ Ext(x) then, because
I satisfies this condition we have that u ∈ CExt(y). Additionally note
that Ext′ is different to Ext only in elements xe with e ∈ ρdf, so all
remaining cases that left to be checked are the ones in which (u, v) ∈
Ext′(xe) with e ∈ ρdf. We consider now all the remaining cases.

– x = xtype: If (xtype, y) ∈ Ext′(xdom), and (u, v) ∈ Ext′(xtype) we
must prove that u ∈ CExt′(y). First, if (xtype, y) ∈ Ext′(xdom)
then (xtype, y) ∈ Ext(xdom) or y = xres by the axiomatic triple
(type, dom, res). If y = xres and (u, v) ∈ Ext′(xtype), then the con-
dition holds because u ∈ Res′ = CExt′(xres) = CExt′(y). Now sup-
pose that (xtype, y) ∈ Ext(xdom), then by the construction of CExt′

we have that CExt′(y) = CExt(y)∪Res′ and then because u ∈ Res′

we obtain u ∈ CExt′(y).
– x = xdom: If (xdom, y) ∈ Ext′(xdom), and (u, v) ∈ Ext′(xdom) we

must prove that u ∈ CExt′(y). First, if (xdom, y) ∈ Ext′(xdom) then
(xdom, y) ∈ Ext(xdom) or y = xprop by the axiomatic triple (dom, dom, prop).
If y = xprop and (u, v) ∈ Ext′(xdom), we have two cases: if (u, v) ∈
{(xs, xo) | (s, dom, o) ∈ Ax} then by the construction of I ′ we have
u ∈ Prop′ = CExt′(xprop) = CExt′(y); if (u, v) ∈ Ext(xdom) then
by the construction of Prop′ we have u ∈ Prop′. Now if (xdom, y) ∈
Ext(xdom), then by the construction of CExt′ we have that CExt′(y) =
CExt(y)∪Res′ and then because u ∈ Res′ we obtain u ∈ CExt′(y).

– x = xrange: If (xrange, y) ∈ Ext′(xdom), and (u, v) ∈ Ext′(xrange)
we must prove that u ∈ CExt′(y). First, if (xrange, y) ∈ Ext′(xdom)
then (xrange, y) ∈ Ext(xdom) or y = xprop by the axiomatic triple
(range, dom, prop). If y = xprop and (u, v) ∈ Ext′(xrange), we have
two cases: if (u, v) ∈ {(xs, xo) | (s, dom, o) ∈ Ax} then by the con-
struction of I ′ we have u ∈ Prop′ = CExt′(xprop) = CExt′(y);
if (u, v) ∈ Ext(xrange) then by the construction of Prop′ we have
u ∈ Prop′. Now if (xrange, y) ∈ Ext(xdom), then by the construction
of CExt′ we have that CExt′(y) = CExt(y)∪Res′ and then because
u ∈ Res′ we obtain u ∈ CExt′(y).

– x = xsp: If (xsp, y) ∈ Ext′(xdom), and (u, v) ∈ Ext′(xsp) we must
prove that u ∈ CExt′(y). First, if (xsp, y) ∈ Ext′(xdom) then (xsp, y) ∈
Ext(xdom) or y = xprop by the axiomatic triple (sp, dom, prop). If
y = xprop and (u, v) ∈ Ext′(xsp), we have several cases: if (u, v) ∈
{(xs, xo) | (s, sp, o) ∈ Ax} then by the construction of I ′ we have u ∈
Prop′ = CExt′(xprop) = CExt′(y); if (u, v) ∈ {(x, x) | x ∈ Prop′}
then u ∈ Prop′ = CExt′(xprop) = CExt′(y); if (u, v) = (x i, xmember)
for some i, then by the construction of Prop′ because there is an
axiomatic triple (i, type, prop) for every i we have u ∈ Prop′;
and if (u, v) ∈ Ext(xprop) then by the construction of Prop′ we have
u ∈ Prop′. Now if (xprop, y) ∈ Ext(xdom), then by the construction of
CExt′ we have that CExt′(y) = CExt(y) ∪ Res′ and then because
u ∈ Res′ we obtain u ∈ CExt′(y).

20

– x = xsc: If (xsc, y) ∈ Ext′(xdom), and (u, v) ∈ Ext′(xsc) we must
prove that u ∈ CExt′(y). First, if (xsc, y) ∈ Ext′(xdom) then (xsc, y) ∈
Ext(xdom) or y = xclass by the axiomatic triple (sc, dom, class). If
y = xclass and (u, v) ∈ Ext′(xsc), we have several cases: if (u, v) ∈
{(xs, xo) | (s, sc, o) ∈ Ax} then by the construction of I ′ we have
u ∈ Class′ = CExt′(xclass) = CExt′(y); if (u, v) ∈ {(x, x) | x ∈
Class′} then u ∈ Class′ = CExt′(xclass) = CExt′(y); if (u, v) ∈
{(x, xres) | x ∈ Class′} then u ∈ Class′ = CExt′(xclass) = CExt′(y);
and if (u, v) ∈ Ext(xclass) then by the construction of Class′ we have
u ∈ Class′. Now if (xclass, y) ∈ Ext(xdom), then by the construction
of CExt′ we have that CExt′(y) = CExt(y)∪Res′ and then because
u ∈ Res′ we obtain u ∈ CExt′(y).

Then, in all cases I ′ satisfies this condition for G.
(c) Let (x, y) ∈ Ext′(xrange) and (u, v) ∈ Ext′(x), we must prove that v ∈

CExt′(y). The same observations for the previous case hold here, so we
must concentrate in cases in which (u, v) ∈ Ext′(xe) with e ∈ ρdf.
– x = xtype: the same proof for xtype in the previous condition works

here considering v instead of u and changing xdom with xrange.
– x = xdom: If (xdom, y) ∈ Ext′(xrange), and (u, v) ∈ Ext′(xdom) we

must prove that v ∈ CExt′(y). First, if (xdom, y) ∈ Ext′(xrange)
then (xdom, y) ∈ Ext(xrange) or y = xclass by the axiomatic triple
(dom, range, class). If y = xclass and (u, v) ∈ Ext′(xdom), we have
two cases: if (u, v) ∈ {(xs, xo) | (s, range, o) ∈ Ax} then by the con-
struction of I ′ we have v ∈ Class′ = CExt′(xclass) = CExt′(y);
if (u, v) ∈ Ext(xrange) then by the construction of Class′ we have
v ∈ Class′. Now if (xdom, y) ∈ Ext(xrange), then by the construction
of CExt′ we have that CExt′(y) = CExt(y)∪Res′ and then because
v ∈ Res′ we obtain v ∈ CExt′(y).

– x = xrange: If (xrange, y) ∈ Ext′(xrange), and (u, v) ∈ Ext′(xrange)
we must prove that v ∈ CExt′(y). First, if (xrange, y) ∈ Ext′(xrange)
then (xrange, y) ∈ Ext(xrange) or y = xclass by the axiomatic triple
(range, range, class). If y = xclass and (u, v) ∈ Ext′(xrange), we
have two cases: if (u, v) ∈ {(xs, xo) | (s, range, o) ∈ Ax} then by the
construction of I ′ we have v ∈ Class′ = CExt′(xclass) = CExt′(y);
if (u, v) ∈ Ext(xrange) then by the construction of Class′ we have
v ∈ Class′. Now if (xrange, y) ∈ Ext(xrange), then by the construction
of CExt′ we have that CExt′(y) = CExt(y)∪Res′ and then because
v ∈ Res′ we obtain u ∈ CExt′(y).

– x = xsp: almost the same proof for xsp in the previous condition
works here considering v instead of u and changing xdom with xrange,
because, by the construction of I ′, xmember ∈ Prop′ (axiomatic triple
(member, dom, res)).

– x = xsc: almost the same proof for xsc in the previous condition
works here considering v instead of u and changing xdom with xrange,
because, by the construction of I ′, xres ∈ Class′ (axiomatic triple
(type, dom, res)).

21

Then, in all cases I ′ satisfies this condition for G.
7. RDFS Additionals:

(a) If x ∈ Class′ then by the construction of I ′ we have (x, xres) ∈ Ext′(xsc).
(b) If x ∈ CExt′(xdatatype) then x = xxmlLit then, by the construction of

I ′ and because (xmlLit, sc, literal) is an axiomatic triple, we have
(x, xliteral) ∈ Ext′(xsc).

(c) If x ∈ CExt′(xcontMP) then x = x i for some i, and then by the construc-
tion of Ext′(xsp) in I ′, we have that (x, xmember) ∈ Ext′(xsp).

Now, what we have shown is that I ′ |= G, and from G |= H we obtain
that I ′ |= H. Note that if we restrict I ′ to vocabulary ρdf we obtain the initial
interpretation I that satisfies all conditions that have to do with ρdf for H and
then I |=ρdf H, and then G |=ρdf H completing the proof.

B.2 Proof of Proposition 1

Proof. It is not difficult to see that the triples in the set A = {(sp, sp, sp),
(sc, sp, sc), (type, sp, type), (dom, sp, dom), (range, sp, range)} an their exis-
tencial version replacing subject or predicat by blank nodes, are satisfied by
every ρdf model, and then they are ρdf–entailed by every graph G. The rest of
the proof follows by a analysis of cases, taking into account that, for a ground
triple to be satisfied by every model, all its components must be elements in ρdf.

B.3 Proof of Theorem 2

Proof. ⇐) Let I = (Res, Prop, Class,Ext, CExt, Lit, Int) be an ρdf model of
G. By definition, I is also a reflexive–relaxed ρdf model for G and then form
G |=nrx

ρdf H we obtain that I is also a reflexive–relaxed ρdf model for H. Now, I
is an interpretation that satisifies the conditions of Definition 4 for H, and I is
such that Ext(Int(sp)) and Ext(Int(sc)) are reflexive relations, then I satisfies
all the conditions of Definition 3 for H and then I is a model under ρdf for H,
completing this part of the proof.

⇒) Let I = (Res, Prop, Class,Ext, CExt, Lit, Int) be a reflexive-relaxed
model of G, and let I ′ be the model obtained from I completing the relations
Ext(Int(sp)) and Ext(Int(sc)) with the diagonals in Prop and Class respec-
tively. Then I ′ is an RDFS model for G (satisfies all the conditions in Definition 6
for G), and then from G |= H we have that I ′ is an RDFS model for H. Now we
will show that I satisfies all triples (s, p, o) ∈ H. Let A be the extension function
that I ′ use in modeling H, then we know that (IntA(s), IntA(p)) ∈ Ext(Int(p))
for every (s, p, o) ∈ H. We also know that I and I ′ differ only in the diagonal
of Ext(Int(sp)) and Ext(Int(sc)). Now, because H does not contain triples of
the form (x, sp, x) nor (x, sc, x) nor their existential versions replacing subject
or object for a blank node, the same extension function A is such that in I
(IntA(s), IntA(p)) ∈ Ext(Int(p)) for every (s, p, o) ∈ H and then satisfies all
the conditions of Definition 4, and finally I is a reflexive–relaxed model for H,
completing this part of the proof.

22

B.4 Proof of Proposition 1

Proof. It is evident that, because the interpretation of sp is not necessary re-
flexive over property names, non of the triples in A = {(sp, sp, sp), (sc, sp, sc),
(type, sp, type), (dom, sp, dom), (range, sp, range)} are axiomatic for |=nrx

ρdf . Fi-
nally, the fact that |=nrx

ρdf ⊆ |=ρdf complete the proof.

B.5 Proof of Theorem 3

First, in the definition of ρdf models for RDF graphs (Definition 3), the only
condition that has to do with the graph being modeled is condition 1 (Simple).
The other conditions have to do only with the interpretation itself. All this
implies that in testing if an interpretation I that is an ρdf model for a graph G,
is also an ρdf model for a graph H, we only have to test if I satisfies condition 1
for H, because I already satisfies all other conditions (it is already an ρdf model
for G).

We split the proof of Theorem 3 in two parts. We first prove the following
lemma stating the soundness of the set of rules for |=ρdf.

Lemma 5. Let G and H be graphs that do not mention RDFS vocabulary out-
side ρdf. Then if H → G, or H ⊆ G, or if there is an instantiation R

R′
of a

rule 2–7 such that R ⊆ G and H = G ∪ R′, then G |=ρdf H.

Proof. Let I = (Res, Prop, Class,Ext, CExt, Int) be an interpretation such
that I |=ρdf G, i.e. I satisfies all the conditions in Definition 3. We know that
I satisfies condition 1 for G and then let A : B → Res be a function such that
Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)) for every triple (s, p, o) ∈
G, We split the proof in cases for every set of rules from 1 to 7.

1. Simple:
(a) We must show that if H → G then G |=ρdf H. Let µ be a map such that

µ(H) ⊆ G. Consider the function A′ : B → Res defined as

A′(x) =

{

A(µ(x)) if µ(x) ∈ B
Int(µ(x)) if µ(x) /∈ B

Note that: (1) if x ∈ B and µ(x) ∈ B then IntA(µ(x)) = A(µ(x)) =
A′(x) = IntA′(x), (2) If x ∈ B but µ(x) /∈ B then IntA(µ(x)) =
Int(µ(x)) = A′(x) = IntA′(x), and (3) if x /∈ B then µ(x) = x and
IntA(µ(x)) = Int(x) = IntA′(x). We have then that for all x ∈ UB,
IntA(µ(x)) = IntA′(x). Let (s, p, o) ∈ H, then (µ(s), µ(p), µ(o)) =
(µ(s), p, µ(o)) ∈ G. By I |=ρdf G we have that Int(p) ∈ Prop and
(IntA(µ(s)), IntA(µ(o))) ∈ Ext(Int(p)), and finally (IntA′(s), IntA′(o)) ∈
Ext(Int(p)), obtaining I satisfies condition 1 of Defintion 3 for H (with
function A′) and also satisfies all other conditions of Definition 3, and
then I |=ρdf H.

(b) Note that if H ⊆ G, then H → G and then G |=ρdf H.

23

2. Subproperty:
(a) Let (a, sp, b), (b, sp, c) ∈ G, then (IntA(a), IntA(b)) ∈ Ext(Int(sp))

and (IntA(b), IntA(c)) ∈ Ext(Int(sp)). Now because I satisfies con-
dition 4 we have that IntA(a), IntA(c) ∈ Prop and then by transitiv-
ity (IntA(a), IntA(c)) ∈ Ext(Int(sp)), then I satisfies condition 1 for
G ∪ {(a, sp, c)} = H and then I |=ρdf H.

(b) Let (a, sp, b), (x, a, y) ∈ G. First note that we need that a, b ∈ U for this
rule to be applicable. We have that Int(a) ∈ Prop and (IntA(x), IntA(y)) ∈
Ext(Int(a)), and (Int(a), Int(b)) ∈ Ext(Int(sp)). By condition 4, Int(b) ∈
Prop and Ext(Int(a)) ⊆ Ext(Int(b)) and then (IntA(x), IntA(y)) ∈
Ext(Int(b)), then we have that I satisfies condition 1 for G∪{(x, b, y)} =
H and then I |=ρdf H.

3. Subclass:
(a) The same proof for rule 2a works changing sp by sc and Prop by Class.
(b) Let (a, sc, b), (x, type, a) ∈ G, then (IntA(x), IntA(a)) ∈ Ext(Int(type)),

and (IntA(a), IntA(b)) ∈ Ext(Int(sc)). By condition 6 we have IntA(a) ∈
Class and IntA(x) ∈ CExt(IntA(a)). By condition 5, IntA(b) ∈ Class
and CExt(Int(a)) ⊆ CExt(Int(b)), then IntA(x) ∈ CExt(IntA(b)),
and then by condition 6 (IntA(x), IntA(b)) ∈ Ext(Int(type)). We have
that I satisfies condition 1 for G∪{(x, type, b)} = H and then I |=ρdf H.

4. Typing:
(a) Let (a, dom, b), (x, a, y) ∈ G. First note that we need that a ∈ U for

this rule to be applicable. Now, we have that (1) (Int(a), IntA(b)) ∈
Ext(Int(dom)), and (2) Int(a) ∈ Prop and (IntA(x), IntA(y)) ∈ Ext(Int(a)).
From condition 6 we obtain IntA(x) ∈ CExt(IntA(b)), and applying
condition 6 again we have that (IntA(x), IntA(b)) ∈ Ext(Int(type))
then I satisfies condition 1 for G∪{(x, type, b)} = H and then I |=ρdf H.

(b) The same proof for rule 4a works changing dom by range and x by y.
5. Implicit Typing:

(a) Let (a, dom, b), (c, sp, a), (x, c, y) ∈ G. First note that we need that c ∈ U
for this rule to be applicable. Now, we have that (1) (IntA(a), IntA(b)) ∈
Ext(Int(dom)), (2) (Int(c), IntA(a)) ∈ Ext(Int(sp)), and (3) Int(c) ∈
Prop and (IntA(x), IntA(y)) ∈ Ext(Int(c)). From (2) by condition 4
we have Int(c), IntA(a) ∈ Prop and Ext(Int(c)) ⊆ Ext(IntA(a)), and
then from (3) we obtain that (IntA(x), IntA(y)) ∈ Ext(IntA(a)). From
this last result, (1), and condition 6 we obtain that IntA(b) ∈ Class and
IntA(x) ∈ CExt(IntA(b)). Finally applying condition 6 again we have
that (IntA(x), IntA(b)) ∈ Ext(Int(type)) then I satisfies condition 1
for G ∪ {(x, type, b)} = H and then I |=ρdf H.

(b) The same proof for rule 5a works changing dom by range and x by y.
6. Subproperty Reflexivity:

(a) Let (x, a, y) ∈ G. First note that we need that a ∈ U for this rule
to be applicable. We have that Int(a) ∈ Prop and then by the re-
flexivity of Ext(Int(sp)) over Prop, we obtain that (Int(a), Int(a)) ∈
Ext(Int(sp)), then we have that I satisfies condition 1 for G∪{(a, sp, a)} =
H and then I |=ρdf H.

24

(b) Let (a, sp, b) ∈ G. By condition 4 we have that Int(a), Int(b) ∈ Prop
and the proof follows the same argument as for rule 6a.

(c) The triples (p, sp, p) with p ∈ ρdf are satisfied by any interpretation (see
Proposition 1) then I |=ρdf G ∪ {(p, sp, p)} for every p ∈ ρdf.

(d) Let (a, p, x) ∈ G with p ∈ {dom, range}. By the new conditions of ρdf
models, we have that Int(a) ∈ Prop and the proof follows the same
argument as for rule 6a.

7. Subclass Reflexivity:
(a) Let (a, sc, b) ∈ G. By condition 5 we have that Int(a), Int(b) ∈ Class

and then by the reflexivity of Ext(Int(sc)) over Class we obtain that
(IntA(a), IntA(a)), (IntA(b), IntA(b)) ∈ Ext(Int(sc)), then we have that
I satisfies condition 1 for G∪{(a, sc, a), (b, sc, b)} = H and then I |=ρdf

H.
(b) Let (x, p, a) ∈ G with p ∈ {dom, range, type}. By the new condition of

ρdf models, we have that Int(a) ∈ Class and the proof follows the same
argument as for rule 7a.

Finally because we choose an arbitrary model I we have that G |=ρdf H.

Lemma 6. Let G and H be graphs that do not mention RDFS vocabulary out-
side ρdf. Then if H → G, or H ⊆ G, or if there is an instantiation R

R′
of a

rule 2–5 such that R ⊆ G and H = G ∪ R′, then G |=nrx
ρdf H.

Proof. Follows from the simple observation that in the proof of Lemma 5 the
condition of reflexivity of the interpretations of sp and sc are necessary only for
rules 6 and 7.

To state the completeness of the set of rules, we must introduce the following
notion of ρdf closure of a graph. Define the graph ρdf-cl(G) as the closure of
G under the application of rules 2 to 7. Note that ρdf-cl(G) is an RDF graph
over universe(G)∪ρdf, that is a superset of G, and that is obtained after a finite
number of application of rules.

Lemma 7. Given a graph G that do not mention RDFS vocabulary outside ρdf,
define the interpretation IG = (Res, Prop, Class,Ext, CExt, Lit, Int) such that:

– Res = universe(G) ∪ ρdf.
– Prop = {p ∈ voc(G) | (s, p, o) ∈ ρdf-cl(G)} ∪ ρdf ∪

{p ∈ universe(G) | (p, sp, x), (y, sp, p), (p, dom, z), or (p, range, v) ∈ G}.
– Class = {c ∈ universe(G) | (x, type, c) ∈ G} ∪

{c ∈ universe(G) | (c, sc, x), (y, sc, c), (z, dom, c), or (v, range, c) ∈ G}.
– Ext : Prop → 2Res×Res the extension function such that:

• if p ∈ U ∩ Prop then Ext(p) = {(s, o) | (s, p, o) ∈ ρdf-cl(G)}
• if p ∈ B ∩ Prop then Ext(p) = {(s, o) | (p′, sp, p), (s, p′, o) ∈ ρdf-cl(G)}.

– CExt : Class → 2Res a function such that CExt(c) = {x ∈ universe(G) | (x, type, c) ∈
ρdf-cl(G)}.

– Lit = universe(G) ∩ L.
– Int the identity function over universe(G) ∪ ρdf.

25

Then for every RDF graph G, we have that IG |=ρdf G.

Proof. We must show that IG satisfies all the conditions of Definition 3 for G.

1. Simple:
(a) First note that by construction of ρdf-cl(G), Res = universe(ρdf-cl(G)) =

universe(G) ∪ ρdf. Take the function A : B → universe(G) ∪ ρdf such
that its restriction to the set of blanks nodes of G results in the identity
function. Now let (s, p, o) ∈ G, then p ∈ U and Int(p) = p ∈ Prop
by construction of Prop because G ⊆ ρdf-cl(G). We also have that
(IntA(s), IntA(o)) = (s, o) ∈ Ext(Int(p)) = Ext(p) by the definition
of Ext because G ⊆ ρdf-cl(G). Finally we have that IG satisfies condi-
tion 1 for G.

2. Subproperty:
(a) Let (a, b), (b, c) ∈ Ext(Int(sp)) = Ext(sp), then by construction of

IG (because sp /∈ B) we have that (a, sp, b), (b, sp, c) ∈ ρdf-cl(G),
then a, b, c ∈ Prop. Because ρdf-cl(G) is closed under application of
rule 2a, we have that (a, sp, c) ∈ ρdf-cl(G) and then (a, c) ∈ Ext(sp) =
Ext(Int(sp)). We conclude that Ext(Int(sp)) is a transitive relation. We
must show that Ext(Int(sp)) is also reflexive over Prop. Let a ∈ Prop,
by the definition of Prop we have three cases: (1) (x, a, y) ∈ ρdf-cl(G); (2)
a ∈ ρdf; (3) (a, sp, b), (b, sp, a), (a, dom, x), or (a, range, x) ∈ ρdf-cl(G).
Because ρdf-cl(G) is closed under application of rules 6 we obtain that in
any case (a, sp, a) ∈ ρdf-cl(G) and then (a, a) ∈ Ext(sp) = Ext(Int(sp))
and then Ext(Int(sp)) is reflexive over Prop.

(b) Let (a, b) ∈ Ext(Int(sp)) = Ext(sp), then by construction of IG we
have that (a, sp, b) ∈ ρdf-cl(G), and we also have that a, b ∈ Prop. We
must show that Ext(a) ⊆ Ext(b). If Ext(a) = ∅ the condition holds.
Suppose then that (x, y) ∈ Ext(a), we have two cases:
– if a ∈ U, by definition (x, a, y) ∈ ρdf-cl(G). Now, if b ∈ U be-

cause ρdf-cl(G) is closed under application of rule 2b we have that
(x, b, y) ∈ ρdf-cl(G) and then (x, y) ∈ Ext(b). If b ∈ B then because
(a, sp, b), (x, a, y) ∈ ρdf-cl(G) by the construction of IG we have that
(x, y) ∈ Ext(b).

– if a ∈ B, by the construction of IG there exists a′ such that (a′, sp, a),
(x, a′, y) ∈ ρdf-cl(G). Note that because ρdf-cl(G) is closed under
application of rule 2a, we have (a′, sp, b) ∈ ρdf-cl(G). Now, if b ∈ U
because (a′, sp, b), (x, a′, y) ∈ ρdf-cl(G) and ρdf-cl(G) is closed under
application of rule 2b we have that (x, b, y) ∈ ρdf-cl(G) and then
(x, y) ∈ Ext(b). If b ∈ B then because (a′, sp, b), (x, a′, y) ∈ ρdf-cl(G)
by the construction of IG we have that (x, y) ∈ Ext(b).

We have shown that in any case (x, y) ∈ Ext(b) and then Ext(a) ⊆
Ext(b).

3. Subclass:
(a) Let (a, b), (b, c) ∈ Ext(Int(sc)) = Ext(sc), then by the construction of

IG we have that (a, sc, b), (b, sc, c) ∈ ρdf-cl(G), then a, b, c ∈ Class.
Because ρdf-cl(G) is closed under application of rule 3a, we have that

26

(a, sc, c) ∈ ρdf-cl(G) and then (a, c) ∈ Ext(sc) = Ext(Int(sc)). We
conclude that Ext(Int(sc)) is a transitive relation. We must show that
Ext(Int(sc)) is also reflexive over Class. Let a ∈ Class, by the definition
of Class we have two cases: (1) (x, type, a) ∈ ρdf-cl(G); (2) (a, sc, b),
(b, sc, a), (x, dom, a), or (x, range, a) ∈ ρdf-cl(G). Because ρdf-cl(G) is
closed under application of rules 7 we obtain that in any case (a, sc, a) ∈
ρdf-cl(G) and then (a, a) ∈ Ext(sc) = Ext(Int(sc)) and then Ext(Int(sc))
is reflexive over Class.

(b) Let (a, b) ∈ Ext(Int(sc)) = Ext(sc), then by the construction of IG we
have that (a, sc, b) ∈ ρdf-cl(G), and we also have that a, b ∈ Class. We
must show that CExt(a) ⊆ CExt(b). If CExt(a) = ∅ the property holds.
Suppose that x ∈ CExt(a), then by definition (x, type, a) ∈ ρdf-cl(G).
Now, because ρdf-cl(G) is closed under application of rule 3b we have
that (x, type, b) ∈ ρdf-cl(G) and then by the construction of IG we have
x ∈ CExt(b).

4. Typing I:
(a) Let (x, a) ∈ Ext(Int(type)) = Ext(type), then by the construction

of IG we have that a ∈ Class and (x, type, a) ∈ ρdf-cl(G), and then
by construction of CExt(a) we have that x ∈ CExt(a). Suppose now
that a ∈ Class and x ∈ CExt(a) then by construction of CExt(a)
we have that (x, type, a) ∈ ρdf-cl(G) and then (x, a) ∈ Ext(type) =
Ext(Int(type)). We have shown that (x, a) ∈ Ext(Int(type)) iff x ∈
CExt(a).

(b) Suppose that (a, b) ∈ Ext(Int(dom)) = Ext(dom) and (x, y) ∈ Ext(a),
we must show that x ∈ CExt(b). First, by the construction of IG,
(a, dom, b) ∈ ρdf-cl(G), we have two cases:
– if a ∈ U then by the construction of IG, (x, a, y) ∈ ρdf-cl(G) and

because ρdf-cl(G) is closed under application of rule 4a we have that
(x, type, b) ∈ ρdf-cl(G), and then by construction of CExt(b), x ∈
CExt(b).

– if a ∈ B, because (x, y) ∈ Ext(a), by construction of IG there exists
a′ such that (a′, sp, a), (x, a′, y) ∈ ρdf-cl(G), and because ρdf-cl(G)
is closed under application of rule 5a we have that (x, type, b) ∈
ρdf-cl(G), and then by construction of CExt(b), x ∈ CExt(b).

We have shown that in any case x ∈ CExt(b).
(c) Suppose that (a, b) ∈ Ext(Int(range)) = Ext(range) and (x, y) ∈

Ext(a), we must show that y ∈ CExt(b). First, by construction of IG,
(a, dom, b) ∈ ρdf-cl(G), we have two cases:
– if a ∈ U then (x, a, y) ∈ ρdf-cl(G) and because ρdf-cl(G) is closed

under application of rule 4b we have that (y, type, b) ∈ ρdf-cl(G),
and then by construction of CExt(b), y ∈ CExt(b).

– if a ∈ B, because (x, y) ∈ Ext(a), by construction of IG there exists
a′ such that (a′, sp, a), (x, a′, y) ∈ ρdf-cl(G), and because ρdf-cl(G)
is closed under application of rule 5b we have that (y, type, b) ∈
ρdf-cl(G), and then by construction of CExt(b), y ∈ CExt(b).

We have shown that in any case y ∈ CExt(b).

27

5. Typing II: all this condition hold by definition of Prop and Class.

We have shown that IG, satisfies all the conditions of Definition 3 for G, and
then IG |=ρdf G.

Similarly as we define ρdf-cl(G), define nrx-ρdf-cl(G) but using only rules
from 2 to 5. Then we have the following Lemma.

Lemma 8. For a graph G, consider the interpretation IG as in Lemma 7 but
using nrx-ρdf-cl(G) instead of ρdf-cl(G). Then IG |=nrx

ρdf G.

Proof. Follows from the simple observation that in the proof of Lemma 7 rules 6
and 7 are neede only to show the reflexivity of the interepretations of sp and of
sc.

Lemma 9. Let G,H be RDF graphs that do not mention RDFS vocabulary
outside ρdf. If G |=ρdf H then there is a map H → ρdf-cl(G). If H does not
conatin triples of the form (x, sp, x) nor (x, sc, x) then, if G |=nrx

ρdf H then there
is a map H → nrx-ρdf-cl(G).

Proof. First for |=ρdf. Consider the interpretation,

IG = (Res, Prop,Ext, Int, Class, CExt)

as defined in Lemma 7, then we have that IG |=ρdf G and because G |=ρdf H
we have IG |=ρdf H. Then we know that IG satisfies condition 1 (Simple) for
H, and then, there exists a function A : B → universe(G) ∪ ρdf such that
for each (s, p, o) ∈ H, Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)).
Now because p ∈ U (p is the predicate in a triple in H), we know that Int(p) =
IntA(p) = p, and Ext(Int(p)) = Ext(p) = {(s, o) | (s, p, o) ∈ ρdf-cl(G)}. Finally,
because (IntA(s), IntA(o)) ∈ Ext(Int(p)) we have that, for each (s, p, o) ∈ H,
(IntA(s), IntA(p), IntA(o)) ∈ ρdf-cl(G) then IntA : H → ρdf-cl(G) is a map
such that IntA(H) ⊆ ρdf-cl(G), that is a map H → ρdf-cl(G).

For |=nrx
ρdf , consider IG as defined in Lemma 8. The proof follows the same

argument as above, but considering the fact that H does not contain triples of
the form (x, sc, x) nor (x, sp, x).

The proof of Theorem 3 follows directly from Lemmas 5 and 9.

B.6 Proof of Corollary 2

The proof of Corollary 2 follows directly from Lemmas 6 and 9.

C Proofs of Section 4

Throughout this section, X stands for one of the fragments of ρdf listed in
Figure 1. By a non X-rule we will understand a rule which mention RDFS
vocabulary outside X.

Let r be one of the rules listed in Section 3.1. We write P ⊢r P ′ if one of the
following cases hold:

28

– r is (1a) and there is a map µ : P ′ → P ; or
– r is (1b) and P ′ ⊆ P ; or
– r is one of the rules (2)-(7) and there is an instance R

R′
of r with R ⊆ P and

P ′ = P ∪ R′.

C.1 Proof of Theorem 4

The proof follows directly from Lemma 9.

C.2 Proof of Theorem 5

Lemma 10. Let X a fragments of ρdf. If G is an X-graph and we have a proof
of H from G using only a single step of rule (1), then H has at most RDFS
vocabulary in X

Proof. It suffices to analize the application of these rules:

1. If the rule applied is (1b), that is, H2 ⊆ G. Hence voc H ⊆ voc G. By
hypotheses, we get that H is an X-graph.

2. If the rule applied is (1a), that is, there is a map µ : H2 → G. For any
(X,Y,Z) ∈ H2 we have (µ(X), µ(Y), µ(Z)) ∈ G, that is, the RDFS vocabu-
lary appearing among µ(X), µ(Y), µ(Z) is in X. Hence the same can be said
about each of X, Y and Z, because they may be blanks, and so it is not
an RDFS vocabulary outside X, or they are not blanks, and so µ acts as
the identity over them, which implies that they actually are equal to their
image under µ, which are not in RDFS vocabulary outside X. Thus H is an
X-graph.

We will say that a the application of a rule r adds a triple t to a graph G if
t 6∈ G and G ⊢r (G ∪ {t} ∪ H) for some graph H.

Lemma 11. Assume that X is a fragment of ρdf and that G is an X-graph. Fix
a ∈ voc(G). Let tsp be the triple (A, sp, A) and let tsc be the triple (A, sc, A).
Suppose that neither tsp nor tsp belongs to G.

Then:

– The application of rules (2a), (3), (6b), (6c), (6d) and (7a), add to G∪{tsc}
and to G ∪ {tsp} the same triples that they add to G; they are voc(G) ∪
{sc, sp}-rules.

– The application of rule (2b) adds a triple (A,B,A) to G ∪ {tsc} but not to
G only if (sc, sp, B) ∈ G, it adds (A,B,A) to G∪ {tsp} but not to G only if
(sp, sp, B) ∈ G, and otherwise it adds the same triples to G∪{tsc}, G∪{tsp},
and G. In any case, this rule is a voc(G) ∪ {sc, sp}-rule.

– The application of rule (4a) adds a triple (A, type, B) to G ∪ {tsc} but not
to G only if (sc, dom, B) ∈ G, it adds (A, type, B) to G ∪ {tsp} but not to
G only if (sp, dom, B) ∈ G, and it cannot be applied otherwise. If (4a) were
applied, it will be a {type} ∪ (voc(G) ∪ {sc, sp})-rule.

29

– The rule (4b) has the same behavior than rule (4a), but with dom replaced
by range.

– The application of rule (5a) adds a triple (X, type, A) to G∪{tsp} but not to
G only if {(A, dom, B), (X,A, Y)} ⊆ G, it adds (A, type, B) to G∪ {tp}, for
p = sc, sp, but not to G only if {(C, dom, B), (p, sp, C)} ⊆ G, and it cannot
be applied otherwise. If (5a) were applied, it will be a {type} ∪ (voc(G) ∪
{sc, sp})-rule.

– The rule (5b) has the same behavior than rule (5b), but with dom replaced
by range.

– The application of rule (6a) always adds (p, sp, p), for p = sc, sp, to G∪{sp},
which can be obtained directly by the application of rule (6c) for p = sc, sp.

Moreover, if we assume that there is no triples in G with sc, nor sp in the
subject, then only rules (5) add triples to G ∪ {tsc} and to G ∪ {tsp}, but the
added triples are the same than rules (4) add to G.

Proof. We only need to check some cases, and the statements of the lemma
follows directly:

– For rule (2b), we have:

1. The trivial application gives the instance
(A, sp, A), (X,A, Y)

(X,A, Y)
.

2. Assuming (sc, sp, B) ∈ G, we have the instance
(sc, sp, B), (A, sc, A)

(A,B,A)
.

3. Assuming (sp, sp, B) ∈ G, we have the instance
(sp, sp, B), (A, sp, A)

(A,B,A)
.

– For rule (4a), we have

1. Assuming (sc, dom, B) ∈ G, we have the instance
(sc, dom, B), (A, sc, A)

(A, type, B)

2. Assuming (sp, dom, B) ∈ G, we have the instance
(sp, dom, B), (A, sp, A)

(A, type, B)
– For rule (4b), we have

1. Assuming (sc, range, B) ∈ G, we have the instance
(sc, range, B), (A, sc, A)

(A, type, B)

2. Assuming (sp, range, B) ∈ G, we have the instance
(sp, range, B), (A, sp, A)

(A, type, B)
– For rule (5a), we have

1. Assuming {(A, dom, B), (X,A, Y)} ⊆ G, we have the instance
(A, dom, B), (A, sp, A), (X,A, Y)

(X, type, B)
, which has the same effect than the in-

stance of rule (4a)
(A, dom, B), (X,A, Y)

(X, type, B)
, which can be directly applied

to G.
2. Assuming {(C, dom, B), (sc, sp, A)} ⊆ G, we have the instance

(C, dom, B), (sc, sp, A), (A, sc, A)

(A, type, B)

30

3. Assuming {(C, dom, B), (sp, sp, A)} ⊆ G, we have the instance
(C, dom, B), (sp, sp, A), (A, sp, A)

(A, type, B)
– For rule (5b), we have

1. Assuming {(A, range, B), (X,A, Y)} ⊆ G, we have the instance
(A, range, B), (A, sp, A), (X,A, Y)

(Y, type, B)
, which has the same effect than the

instance of rule (4a)
(A, range, B), (X,A, Y)

(Y, type, B)
, which can be directly ap-

plied to G.
2. Assuming {(C, range, B), (sc, sp, A)} ⊆ G, we have the instance

(C, range, B), (sc, sp, C), (A, sc, A)

(A, type, B)
3. Assuming {(C, range, B), (sp, sp, A)} ⊆ G, we have the instance

(C, range, B), (sp, sp, C), (A, sp, A)

(A, type, B)

– For the rule (6a) we have the instances
(A, sc, A)

(sc, sp, sc)
and

(A, sp, A)

(sp, sp, sp)
.

Both instances have the same effect than the instances
(sc, sp, sc)

and

(sp, sp, sp)
of rule (6c)

The last assertion of the lemma follows directly form the above.

We will say that a rule r with instances R/R′ inserts a name in ρdf if it
appears in R′ but not in R. Similarly, we will say that a rule r with instances
R/R′, different of a rule (1), drops a name p in ρdf if p appears in R but not in
R′.

Next lemma needs no proof, because it is a simple matter of checking the ρdf
vocabulary involved in each rule of Section 3.1.

Lemma 12. Assume that all ρdf vocabulary mentioned in a triple appears as
property.
The only names in ρdf that are inserted (droped) by a rule are:

– type, inserted by rules (4) (droping dom or range) and rules (5) (droping
dom, range and sp).

– sc, inserted in a triple (A, sc, A) by the rule (7b) (droping dom, range or
type)

– sp, inserted in a triple (A, sp, A) by the rules (6a), (6c) and (6d) (drop-
ing dom or range), and droped by rule (2b) without the insertion of RDFS
vocabulary.

Let X be a fragment of ρdf and let G and H be X-graphs. We say that a
rule R different of rules (1) is superfluous for X in a proof G ⊢ρdf H if it inserts
vocabulary outside X and the triples with the extra vocabulary inserted cannot
be droped using rules different of (1) and must be deleted in some step only
using the rule (1), in order to produce H. Hence none rule applied to the triples
with extra RDFS vocabulary produce triples that influence H.

31

Lemma 13. Assume that all ρdf vocabulary mentioned in a triple appears as
property.
The following are the unique cases of fragments X of ρdf where there are rules
not included in RX which are superfluous for X:

1. R{d + r}, where rules (4a) and (4b) are superfluous and inserts type.

2. R{d + r} and R{sp, d + r}, where rules (4a), (4b), (5a) and (5b) are super-
fluous and insert type.

3. R{type}, R{d + r}, R{sp, type}, R{sp, d + r}, R{type, d + r}, where rule (7b)
is superfluous and inserts sc.

4. RX where sp 6∈ X, where rules (6a) or (6c) or (6d) are superfluous and
inserts sp.

Proof. Assume that X is a fragment of ρdf and that there exists a proof of
G ⊢ρdf H, where G and H are two X-graphs, in which RDFS vocabulary outside
X was inserted by a the application of some rule.

Lemma 12 now shows that the only possible cases are that where Xdoes not
contains sc, sp or type.

By lemma 12, the only rule which inserts sc is (7b), and adds a triple of the
form (A, sc, A).

By Lemma 12, the only rules which insert sp are (6a), (6c) and (6d), and the
triples added by the application of these rules as the form (A, sp, A).

By Lemma 12 the only rules that inserts type are (4) and (5).

But the only rule that drops type is (7b), which produces a triple of the form
(A, sc, A).

We have two cases:

1. type ∈ X. Hence sc 6∈ X or sp 6∈ X and we have a rule that inserts one of
these names. So the triple (A, sc, A) or (A, sp, A) was added, but Lemma 11
and the assumption show that any rule other than (1) applied to (A, sc, A)
or (A, sp, A) produces more triples of the same form. From this kind of triple,
rule (1a) may add triples of the form (X, sc, Y) or (X, sp, Y), for X 6= Y
and at least one of them a blank; using such triples, we have that

(a) rule (1a) produces the same kind of triples,

(b) rules (2) for sp and (3a) for sc need to be applied or produces, the same
kind of triples,

(c) rules (6b) and (7) produce only triples of the form (A, sc, A) again,

(d) rules (4) and (5) must needs to put a blank node as the predicate of a
triple, which is not a well formed RDF triple.

(e) rule (3b) applied to (X, sc, Y) has the form:

(X, sc, Y), (Z, type,X)

(Z, type, Y)

We have to analize two cases:

32

i. Y is blank. As rule (1a) has the instance

(Z, type,X)

(Z, type, Y)

we have that the rule that inserts sc was innecesary in the proof.
ii. X is blank and Y is not a blank. We are assuming that X or Y

cames from the application of rule (1a) to (A, sc, A), so if Y is not
a blank, we have Y = A. The mentioned instance has now the form

(X, sc, A), (Z, type,X)

(Z, type, A)

But from one or more applications of rule (1a) we have that (Z, type,X)
must be originated from a triple (Z ′, type, A). If Z is a blank, it
may be originated in one application of rule (1a); otherwise, Z ′ = Z.
Hence under the application of rule (1a) to (A, sc, A) we get the ad-
dition of the triples (X, sc, A), (Z, type,X), (Z, type, A). Thus the
rule inserting sc is superfluous.

As sc 6∈ voc(H) and sp 6∈ voc(H), then the rules that inserts sc or sp are
superfluous.

2. type 6∈ X. Hence X contains dom or range and may contains, for rule (5),
sp. As rules (1) cannot be applied to get H and type 6∈ voc(H), a rule that
drops type must exists. Lemma 12 shows that type can only be droped by
rule (7b), and as this rule adds a triple of the form (A, sc, A), Lemma 11
shows that the only triples added thanks to the presence of (A, sc, A) are
triples of the form (B, sc, B) or (B, sp, B) or triples which mention type

again.

In both cases, we get that the rules used to insert RDFS vocabulary outside
X are superflous.

Lemma 14. Let X be a fragment ρdf and let G and H two X-graphs. Let G =
P1, . . . , Pk = H be a proof of G ⊢ρdf H If rules (1) are not used in this proof,
then every rule used in the proof is in RX or it is superfluous.

Proof. We prove that any non X-rule is superflous or it cannot be applied in the
proof. Hence only X-rules or superflous rules are applied.

Assume that a non X-rule r is used in some step in the proof, that is, there
is j with 2 ≤ j ≤ k such that Pj−1 ⊢r Pj and rule r has an instance R

R′ with R
or R′ mentioning RDFS vocabulary outside X. Suppose that p is the mentioned
name, that is, p ∈ ρdf and p 6∈ X. If R mention p but Pj−1 does not, then the
rule is not applicable. So, if R mention RDFS vocabulary outside X, Pj−1 does
it, and if R′ mention RDFS vocabulary outside X, Pj does it.

Moreover, note that none X-rule inserts p. Therefore, as G is an X-graph,
it does not mention p, and inductively, assuming that every rule in the proof
is an X-rule, we get that none of them inserts p, and we cannot have that p is
mentioned anywhere in the proof.

33

Now assume first that p is mentioned in R and in Pj−1. By the above, p must
be inserted in a previous step in the proof. Now we proceed to analize the rules
that inserts RDFS vocabulary outside X. To do this, assume p is not mentioned
in Pj−1 and p is mentioned in Pj . By Lemma 12 we have two cases to analize:

1. p = type

Hence dom or range belongs to X, and possibly sp ∈ X. But the unique rule
other than (1) that drops type is (7b) for p = type, which by Lemma (13)
is superfluous for the proof.

2. p = sc or p = sp

By Lemma (13), the rules applied for this case are superfluous.

This completes the proof of the lemma.

Now we prove the theorem:

Lemma 14 shows that the only non superfluous rules are X-rules. Deleting
from the proof all steps which are produced by non X-rules othar than rule (1),
we obtain a proof using only X-rules and rule (1).

C.3 Proof of Lemma 1

Assume first that G|{sp,A,B,C} |=ρdf (A,B,C). Clearly G |=ρdf G|{sp,A,B,C}

which gives G |=ρdf (A,B,C).
To prove the converse, assume G |=ρdf (A,B,C). Theorem 3 shows that

G ⊢ρdf (A,B,C). Thus there is a proof P1, . . . , Pk of this. Analyzing the rules (2)-
(7), the only rule which adds the triple (A,B,C) with b 6∈ ρdf is rule (2b). Hence
the triples (D, sp, B) and (A,D,C) must be in Pk−1.

Note that using rule (6a) and rule (2b) we may have the following trivial
situation:

(A,B,C)

(B, sp, B)

(B, sp, B), (A,B,C)

(A,B,C)

Delete from the proof any ocurrence of that situation.
Since (A,B,C) is ground, we have that, unless (A,B,C) ∈ G, the only rule

applied to get this triple is (2b):

(B, sp,D), (A,D,C)

(A,B,C)

With the deletion of trivial applications of rules, we have that D 6= B. More-
over, by assumption, D cannot be in ρdf, because B 6∈ ρdf and (B, sp,D) is
used.

Hence (A,D,C) ∈ G, or (A,D,C) 6∈ G but G ⊢ρdf (A,D,C) and we repeat
the analisys. Note that (A,D,C) contains vocabulary from (A,B,C), and that
any triple from where it may comes by rule (2b) also mention A and C.

34

On the other hand, (B, sp,D) ∈ G, or (B, sp,D) 6∈ G and we have that only
rule (2a) was applied

Note that using rule (2a) we may have the following trivial situations:

(B, sp, B), (B, sp,D)

(B, sp,D)
,

(B, sp,D), (D, sp,D)

(B, sp,D)

Delete from the proof any ocurrence of both situations. Hence the application
of rule (2a) is as:

(B, sp, E), (E, sp,D)

(B, sp,D)

with E 6= B and E 6= D.
As before, we get E 6∈ ρdf. Thus (B, sp, E) ∈ G or it is obtained from

rule (2a), and the same holds for (E, sp,D). Note that (B, sp, E) and (E, sp,D)
mention sp.

In any case, the only rules that may be applied are (2b) and (2a), and the
triples from G used in the proof must mention A or B or C or sp. This proves
the lemma.

C.4 Proof of Lemma 2

1. The implication from right to left is trivial. To prove the opposite direction,
assume that G |= (A, dom, B). By Theorem 3, we have G ⊢ρdf (A, dom, B)
and so there exists a proof P1, . . . , Pk of this.
Now we concern with the rule of the step Pk−1, Pk. The only rule other than
rule (1) that may produce (A, dom, B) is (2b) in the form

(Z, sp, dom), (A,Z,B)

(A, dom, B)

We have two cases:
(a) Z = dom, in which case (A, dom, B) ∈ Pk−1, and so the application of (2b)

was trivial, or
(b) Z 6= dom, in which case we contradicts the assumption of this secion

about the use of ρdf volcabulary as subject or object of triples.
Hence rule (2b) was not used in the step Pk−1, Pk, or it was trivial.
Thus only rule (1) could be applied to Pk−1 to produce Pk. But Lemma 10
implies that Pk−1 must mention dom to produce (A, dom, B).
Inductively, we get that G must mention dom to have proof of (A, dom, B).
This proves the lemma.

2. The proof is similar.

C.5 Proof of Lemma 3

The implication from right to left is trivial. To prove the opposite direction,
assume A 6= B are ground terms and that G |= (A, sc, B). By Theorem 3, we
have G ⊢ρdf (A, sc, B) and so there exists a proof P1, . . . , Pk of this.

35

Now we concern with the rule of the step Pk−1, Pk. Rule (1a) cannot be used
because the terms are ground, rule (2b) cannot be used because it imply the use
of sc as subject or object in a triple, and it contradicts the general assumption
of this section. Rules (2a), (3b), (4), (5) does not mention sc as predicate in
their produced triples. Rules (6b) and (7) cannot be used because A 6= B. Thus
only rules (1b) and (3a) produces (A, sc, B) with A 6= B being ground terms.
Rule (1b) means that (A, sc, B) ∈ Pk−1, and we repeat the analisys now for
Pk−2 and Pk−1. Rule (3a) used has the form

(A, sc, C), (C, sc, B)

(A, sc, B)

for some C. We have two cases:

1. C is ground. Hence {(A, sc, C), (C, sc, B)} ⊆ Pk−1 and we repeat the anal-
isys now for Pk−2 and Pk−1.

2. C is blank. We may have the following situation:

(7b) :
(Y, p,A)

(A, sc, A)

with p ∈ {dom, range, type}, and

(1a) :
(A, sc, A)

(A, sc, C)

and for (C, sc, B) we have

(7b) :
(Z, p,B)

(B, sc, B)

with p ∈ {dom, range, type}, and

(1a) :
(B, sc, B)

(C, sc, B)

In such cases we may use ρdf vocabulary different of sc. But the use of
rule (1a) uses the same blank, C, in different steps, to different terms, A
and B. This fact is a violation of the allocation of blanks (see [13]), and
also contradicts Theorem 4, because we cannot have a single application of
rule (1a) with a map µ such that µ(C) = A 6= B = µ(C).
Thus C is ground.

Thus the only triples in Pk−1 which produce (A, sc, B) are of the form
(X, sc, Y) with X 6= Y being groud terms. Inductively, we have that the only
triples in G that are used in the proof by a rule mention sc. This proves the
lemma.

The proof of G |= (A, sp, B)iffG|sp |= (A, sp, B), for A 6= B ground terms,
is similar to that made for sc, with sc replaced by sp, and rule (3a) replaced by
rule (2a)

36

C.6 Proof of Lemma 4

Assume G |= H. Theorem 3 shows that G ⊢ρdf H. Thus the re exists a proof
P1, . . . , Pk of this.

1. Suppose that type 6∈ voc(H). By Theorem 4 any application of rule (1a)
can be made in the last step. For Pk−1, as type 6∈ voc(H), Lemmas 1,
2 and 3 shows that, to produce ρdf vocabulary in H we need the same
vocabulary and, at most, we may force only to mention sp from G. Thus we
have G|voc(H)∪{sp}H.

2. Suppose that type ∈ voc(H) and that sc 6∈ voc(H). The only differences
with the previous proof are that
(a) rules (4) and (5) may inserts type using ρdf vocabulary from the set

{dom, range, sp}.
(b) As sc 6∈ voc(H), we cannot apply rule (7b), which inserts sc from

triples of the form (X, p,A) for p ∈ {dom, range, type}. The problem
with this rule is that it may uses some term X not included in voc(H)∪
{dom, range, sp}.

In any case, we have that G|voc(H)∪{dom,range,sp} ⊢ρdf H, which proves the
Lemma.

D Proofs of Section 5

D.1 Proof of Theorem 6

Proof. For the upper bound, the result follows by an analysis of the rules. The
most important point is the propagation –when applicable– of the triples of the
form (x, a, y) through the transitive closure of the G(sp) graph by the usage of
rule 2(b): it can be shown that this gives at most |G∅| × |Gsp| triples. For triples
having a fixed predicate in ρdf the quadratic bound is trivial. The lower bound
follows from the example below.

Example 2 (lower bound for the closure). Consider the graph {(a1, sp, a2), . . . ,
(an, sp, an+1)}∪{(x1, a1, yn), . . . , (xn, an, yn)}. The number of triples of the clo-
sure of this graph is 2n + 1 +

∑n
k=1 k, that is order Ω(n2).

D.2 Proof of Theorem 7

Proof (Sketch). Correctness and completeness of the algorithm follows from an
inspection of the rules. The algorithm uses the rules in a bottom-up fashion.
There are some subtleties in points 5 and 6. Point 5 follows from Lemma 1 and
rule 2(a). The construction of G(sp)∗ can be done in |G| log |G| steps: order
G∅ and then while traversing G(sp) do binary search on G∅. For point 6 (see
Figure 3) the crucial observation is that in G(sp)′, if there is a path from a
vertex marked a to a vertex u marked d(v), then G |= (a, u, y) for some y, and
hence G |= (a, type, v) using rule 4(a). Note that this checking takes time at
most linear in |G|. From here, it is easy to see that the checking in G(sc)′ will
do the job.

37

dom

u

a

y
e

sp

type

b
sc

sc

G(sp)′

G(sc)′
w

v

a

d(v)

Figure 3. Point 6 of the Ground Entailment Algorithm

D.3 Proof of Corollary 3

Proof. Just note that for ground graph H, G |=ρdf H iff for each t ∈ H, G |=ρdf t.

D.4 Proof of Proposition 2

Proof. The bound is obtained by coding the problem of determining if given sets
A,B, A ∩ B 6= ∅. Given A = {a1, . . . , an} and B = {b1, . . . , bn}, construct an
RDF graph as follows: G = {(ai−1, sp, ai)}2≤i≤n ∪ {(x, bj , y)}1≤j≤n. Then use
the fact that G |= (x, an, y) iff A ∩ B 6= ∅.

38

