
An Index for Two Dimensional String Matching Allowing RotationsKimmo Fredriksson � Gonzalo Navarro y Esko Ukkonen �November 17, 1999AbstractWe present an index to search a two-dimensional pattern of size m�m in a two-dimensionaltext of size n�n, even when the pattern appears rotated in the text. The index is based on su�xtrees. By using O(n2) space the index can search the pattern in O(m5) worst case time and inO(log�(n)5=2) on average, where � is the alphabet size. A larger index of size O(n2 log�(n)3=2)yields an average search time of O(log� n). We also discuss alternative matching models.1 IntroductionThe problem of searching a two-dimensional pattern of size m � m in a two-dimensional text ofsize n � n when the pattern can appear in the text in rotated form was �rstly addressed from acombinatorial point of view in [1]. They present an online algorithm for searching a pattern allowingrotations.In this work we are interested in o�ine searching, that is, in building an index over the textthat allows fast querying. The data structure we use is based on su�x trees. Su�x trees for two-dimensional texts has already been considered, e.g. in [6, 4, 5]. The idea of searching a rotatedpattern using a su�x array is mentioned in [6], but they allow only rotations of multiples of 90degrees. The problem is much more complex if we want to allow any rotation.The matching model we use in this paper is that the pattern center must match a text center[1]. Moreover, for the pattern to be considered to appear centered at some text position, each textcenter involved must match the value of the pattern cell where the text center lies. We also consideranother model (called "grays" here) where the value of the text center must be between the minimumand maximum among the 9 neighbors surrounding the corresponding pattern cell [2].Our results can be summarized in Table 1. We call � the alphabet size and our average caseresults assume uniform distribution over those values. The complexities assume the use of su�xtrees, while for su�x arrays the time has to be multiplied by O(logn).�Dept. of Computer Science, University of Helsinki.yDept. of Computer Science, University of Chile. Work developed while the author was in a postdoctoral stay atthe Dept. of Computer Science, Univ. of Helsinki. Partially supported by Fundaci�on Andes.1



Model Time SpaceExact log�(n)5=2 n2Exact log� n n2 log�(n)3=2Grays n2� 2log1:25 � log�(n)3=2 n2Table 1: Our results.2 The Data StructureWe propose to use a su�x tree or array of the text, de�ned as follows. Each cell of the text de�nesa string which is obtained by reading text positions at increasing distances from the center of thecell. The �rst character is that of the cell, then come the 4 closest centers (from the cells above,below, left and right of the central cell), then the other 4 neighbors, and so on. The cells at thesame distance are read at some prede�ned order. If such a string hits the border of the text it isconsidered �nished there. We will call \sistrings" those strings obtained. Figure 1 shows a possiblereading order.
1213 2021 24

0 249 11

1016 1722 23

15 615 18

3 7814 19Figure 1: A possible reading order for the sistring that starts in the middle of a text of 5� 5.Therefore each text cell de�nes a string of length O(n2). A su�x trie on those cells can be built,which has average size O(n2) and average depth O(log�(n2)). Alternatively, the unary paths of suchtrie can be compressed in order to obtain a su�x tree of O(n2) worst case size. Finally, a su�xarray can be obtained by collecting the leaves of the su�x tree. The su�x array is also O(n2) spacebut much smaller in practice. The su�x trie can be constructed in O(n2 log� n) average time. Thesu�x array can be built in O(n2 logn) string comparisons, which has to be multiplied by O(log� n2)to obtain average character comparisons.We describe the algorithms in the su�x trie for simplicity. For su�x arrays one needs to multiplythe results by O(logn) as well. 2



3 The Search AlgorithmA brute force search approach is to check the pattern in its O(m3) orientations and search each onein the su�x trie. To check the pattern in a given orientation we have to see in which order have thepattern cells to be read so that they match the same reading order of the su�x trie construction.This gives immediately an algorithm which is O(m5) time.Figure 2 shows the reading order induced in the pattern by a rotated occurrence. For eachpossible rotation we compute the induced reading order, build the string obtained by reading thepattern in that order from its center, and search that string in the su�x trie. Note in particularthat some pattern cells may be read more than once and others may not be considered at all.
121314

3 789 20

0 2415 19

15 6 1116

10 17 18

Figure 2: Reading order induced in the pattern by a rotated occurrence.Note that the number of rotations to try is incremental: until we do not consider the 6th textcell, there are only 4 relevant orientations. The number of rotations grows as we get farther from thecenter and they are tried only on the surviving branches of the su�x trie. In the worst case, however,we still check O(m5) cells (because the number grows polynomially instead of exponentially).However, if n is not too large, not all these paths exist on average. We use the simple modelwhere it is assumed that all the di�erent strings of length up to log� n2 = 2 log� n exist, and afterthat there are n2 di�erent strings. This model is pessimistic but has the same order of the averagecase if the text is random.This means that we enter always until depth h = 2 log� n in the su�x trie. The radius ofthe pattern considered at that depth is O(ph), and therefore the number of di�erent rotations isO(h3=2). Since each rotation involved getting into the trie up to depth h, the total amount of workis O(h5=2). After that point we have O(h3=2) candidates that are searched deeper in the su�x tree.However, there are on average n2=�` sistrings of length ` matching a given string, so the total workdone when traversing the deeper levels of the su�x tree until they get eliminated isX`�1+2 log� n n2�` `3=2 = X̀�1 (`+ 2 log� n)3=2�` = O(log� n)3=2Therefore we have a total search cost of O(log� n)5=2.3



4 A Larger but Faster IndexSince the main cost of the search lies in the �rst part, we consider now indexing also the rotatedversions of the text sistrings, so that the rotations of the pattern need not be considered. Imaginethat we index all the rotations of the text up to depth H . This means that there will be O(n2H3=2)sistrings, and the sizes of the su�x tree and array will grow accordingly.The bene�t comes at search time: in the �rst part of the search we do not need to considerrotations of the pattern, since all the rotated ways to read the text are already indexed. Since weindex O(n2H3=2) strings now, all the di�erent sistrings will exist until depth h0 = log�(n2H3=2) =2 log� n + 3=2 log�H . We �rst assume that H � h0. This means that until depth H we payO(H) = O(log� n). After that depth all the strings are searched, which since H � h0 are alldi�erent and the summation is as before and yields O(n2H3=2=�H). Therefore the total search timeis O H + n2H3=2�H !which is optimized forH = 2 log� n+(1=2) log�H . Since this is smaller than h0 we take the minimalH = h0. For instance H = x log� n works for any x > 2.This makes the total search time O(log� n) on average. The space complexity bocomes nowO(n2(log� n)3=2). Trying to use H < h0 gives the same complexity of the previous section.5 A Matching Model for Gray LevelsA di�erent matching model is that the text center must be between the minimum and maximumpattern color surrounding the pattern cell where the text center lies. In this case, we do not enterinto a single branch of the su�x tree, but for each pattern cell we must enter into all the text colorswhich are between the minimum and maximum neighbor of that pattern cell. Say that this numberis �.Then we enter into all the �h nodes up to depth h (since all exist). This is �2 log� n = n2 log��.After this we have n2 di�erent strings, we select � of them and go to their subtrees. Each selectedsubtree has average size n2=� since we have selected the substrings that are continued with someletter. The recurrence and its solution isT (n2) = �T (n2=�) = O(n2 log��)Therefore the search of a single string (no rotations allowed yet) takes O(n�), for � = 2 log��.If we allow rotations, then all them exist up to depth h. So we have that the amount of workup to there is h�1X̀=1�``3=2 = O �n�(log� n)3=2�and the same happens to the second part of the search. Indexing the rotations is not a goodidea now, because the cost to traverse the dense part of the tree is very high. If we index allthe rotations up to depth H = x log� n for x > 2 then the �rst part of the traversal will costO(�H = nx log� n) = !(n�(log� n)3=2). 4



If we consider that the distribution is uniform then, by taking the maximum (minimum) over 9samples of a uniform distribution we get at 9=10 of the real maximum (minimum). Hence �=� = 4=5and � = 2(1� 1= log5=4 �).6 Conclusions and Future WorkWe have proposed a su�x tree index to search two dimensional patterns in two dimensional textsallowing rotations. The proposed method works best for circular and without-holes patterns. Oth-erwise we should take the biggest circle inside the pattern with that property, search it using thesu�x tree, and check the rest directly in the text occurrences.On average, it is enough that a circle containing more than 2 log� n characters can be foundinside the pattern to make the total cost of this veri�cation negligible. This means a circle of radiusat least p2=� log� n.It is possible to extend the model to not needing to match pattern centers against text centers.In this case the number of patterns grows as O(m7) and therefore there are O(`7=2) sistrings tosearch at depth `. The search time becomes O(log� n)9=2. By indexing all the rotations and centerdisplacements we get O(log� n) time again, but at a space cost of O(n2(log� n)7=2).It is also possible to extend the method to 3 dimensions [3]. With center to center assumptionwe have O(m11) rotations. This means O(`11=3) sistrings at depth `. Therefore, at O(n3) space thetotal search time becomes O(log� n)14=3, and if we index all the rotations up to H = x log� n withx > 3 we will have a space requirement of O(n3(log� n)11=3) and a search cost of O(log� n). Forgray levels we have again O(n�) (for � = 2(1 � 1= log14=13 �)) and indexing more rotations helpslittle (now � = 3 log��).Finally, it is interesting to extend this method to allow errors in the matches. Standard techniquesof one-dimensional string matching can be applied [8], but the cost will have a part exponential onthe number of errors allowed [7].References[1] K. Fredriksson and E. Ukkonen. A rotation invariant �lter for two-dimensional string matching.In Proc. CPM'98, LNCS 1448, pages 118{125, 1998.[2] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate image matching undertranslations and rotations. year?[3] K. Fredriksson and E. Ukkonen. Combinatorialmethods for approximate pattern matching underrotations and translations in 3D arrays. year?[4] R. Giancarlo. A generalization of su�x trees to square matrices, with applications. SIAM J. onComputing, 24:520{562, 1995.[5] R. Giancarlo and R. Grossi. On the construction of classes of su�x trees for square matrices:Algorithms and applications. Information and Computation, 130:151{182, 1996.5



[6] G. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text: PAT trees and PAT arrays,pages 66{82. Addison-Wesley, 1992.[7] G. Navarro and R. Baeza-Yates. A new indexing method for approximate string matching. InProc. CPM'99, LNCS 1645, pages 163{185, 1999.[8] E. Ukkonen. Approximate string matching over su�x trees. In Proc. CPM'93, pages 228{242,1993.

6


