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Abstract

We present an index to search a two-dimensional pattern of size m x m in a two-dimensional
text of s1ize n x n, even when the pattern appears rotated in the text. The index is based on suffix
trees. By using O(n?) space the index can search the pattern in O(m®) worst case time and in
O(log, (n)%/?) on average, where ¢ is the alphabet size. A larger index of size O(n”log, (n)3/?)
yields an average search time of O(log, n). We also discuss alternative matching models.

1 Introduction

The problem of searching a two-dimensional pattern of size m X m in a two-dimensional text of
size n X n. when the pattern can appear in the text in rotated form was firstly addressed from a
combinatorial point of view in [1]. They present an online algorithm for searching a pattern allowing
rotations.

In this work we are interested in offline searching, that is, in building an index over the text
that allows fast querying. The data structure we use is based on suffix trees. Suffix trees for two-
dimensional texts has already been considered, e.g. in [6, 4, 5]. The idea of searching a rotated
pattern using a suffix array is mentioned in [6], but they allow only rotations of multiples of 90
degrees. The problem is much more complex if we want to allow any rotation.

The matching model we use in this paper is that the pattern center must match a text center
[1]. Moreover, for the pattern to be considered to appear centered at some text position, each text
center involved must match the value of the pattern cell where the text center lies. We also consider
another model (called "grays” here) where the value of the text center must be between the minimum
and maximum among the 9 neighbors surrounding the corresponding pattern cell [2].

Our results can be summarized in Table 1. We call ¢ the alphabet size and our average case
results assume uniform distribution over those values. The complexities assume the use of suffix
trees, while for suffix arrays the time has to be multiplied by O(logn).
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‘ Model H Time ‘ Space ‘

Exact, log,, (77/)5/2 n?

Fxact, log, n n? log,, (77/)3/2
2

Grays || n° %1257 log, (n)3/?2 2

Table 1: Our results.

2 The Data Structure

We propose to use a suffix tree or array of the text, defined as follows. Each cell of the text defines
a string which is obtained by reading text positions at increasing distances from the center of the
cell. The first character is that of the cell, then come the 4 closest centers (from the cells above,
below, left and right of the central cell), then the other 4 neighbors, and so on. The cells at the
same distance are read at some predefined order. If such a string hits the border of the text it is
considered finished there. We will call “sistrings” those strings obtained. Figure 1 shows a possible
reading order.

2 |16 | 10 |17 | 23

15| 5 1|6 18

14 | 8 3 7 19

21 | 13|12 | 20 | 24

Figure 1: A possible reading order for the sistring that starts in the middle of a text of 5 x 5.

Therefore each text cell defines a string of length O(n?). A suffix trie on those cells can be built,
which has average size O(n?) and average depth O(log, (n?)). Alternatively, the unary paths of such
trie can be compressed in order to obtain a suffix tree of O(n?) worst case size. Finally, a suffix
array can be obtained by collecting the leaves of the suffix tree. The suffix array is also O(n?) space
but much smaller in practice. The suffix trie can be constructed in O(n?log, n) average time. The
suffix array can be built in O(n?log n) string comparisons, which has to be multiplied by O(log, n?)
to obtain average character comparisons.

We describe the algorithmsin the suffix trie for simplicity. For suffix arrays one needs to multiply
the results by O(logn) as well.



3 The Search Algorithm

A brute force search approach is to check the pattern in its O(m?) orientations and search each one
in the suffix trie. To check the pattern in a given orientation we have to see in which order have the
pattern cells to be read so that they match the same reading order of the suffix trie construction.
This gives immediately an algorithm which is O(m?) time.

Figure 2 shows the reading order induced in the pattern by a rotated occurrence. For each
possible rotation we compute the induced reading order, build the string obtained by reading the
pattern in that order from its center, and search that string in the suffix trie. Note in particular
that some pattern cells may be read more than once and others may not be considered at all.

Figure 2: Reading order induced in the pattern by a rotated occurrence.

Note that the number of rotations to try is incremental: until we do not consider the 6th text
cell, there are only 4 relevant orientations. The number of rotations grows as we get farther from the
center and they are tried only on the surviving branches of the suffix trie. In the worst case, however,
we still check O(m”) cells (because the number grows polynomially instead of exponentially).

However, if n is not too large, not all these paths exist on average. We use the simple model
where it is assumed that all the different strings of length up to log, n? = 2log, n exist, and after
that there are n? different strings. This model is pessimistic but has the same order of the average
case if the text is random.

This means that we enter always until depth A = 2log, n in the suffix trie. The radius of
the pattern considered at that depth is ()(\/ﬁ)7 and therefore the number of different rotations is
O(hg/z). Since each rotation involved getting into the trie up to depth h, the total amount of work
is O(hP/?). After that point we have O(h%/?) candidates that are searched deeper in the suffix tree.
However, there are on average n?/a" sistrings of length ¢ matching a given string, so the total work
done when traversing the deeper levels of the suffix tree until they get eliminated is

2 3/2
n” a2 (£ +2log, n) 3/2
yDREATVCRD (Rl KM
2142 log, n £2>1

Therefore we have a total search cost of O(log, n)%/2.



4 A Larger but Faster Index

Since the main cost of the search lies in the first part, we consider now indexing also the rotated
versions of the text sistrings, so that the rotations of the pattern need not be considered. ITmagine
that we index all the rotations of the text up to depth H. This means that there will be O(n? H3/2)
sistrings, and the sizes of the suffix tree and array will grow accordingly.

The benefit comes at search time: in the first part of the search we do not need to consider
rotations of the pattern, since all the rotated ways to read the text are already indexed. Since we
index O(n?H?3/?) strings now, all the different sistrings will exist until depth A’ = log, (n?H?/?) =
2log, n + 3/2log, H. We first assume that H > h’. This means that until depth H we pay
O(H) = O(log, n). After that depth all the strings are searched, which since H > h’ are all
different and the summation is as before and yields O(n? Hg/z/nﬁ). Therefore the total search time

n2 H3/2)

18

O H
which is optimized for H = 2log, n+(1/2) log, H. Since this is smaller than A’ we take the minimal
H = h'. For instance H = xlog, n works for any = > 2.

This makes the total search time O(log, n) on average. The space complexity bocomes now

O(n*(log, n)??). Trying to use H < b’ gives the same complexity of the previous section.

5 A Matching Model for Gray Levels

A different matching model is that the text center must be between the minimum and maximum
pattern color surrounding the pattern cell where the text center lies. In this case, we do not enter
into a single branch of the suffix tree, but for each pattern cell we must enter into all the text colors
which are between the minimum and maximum neighbor of that pattern cell. Say that this number
is A.

Then we enter into all the A" nodes up to depth A (since all exist). This is A2!08s7 = p2logs 4
After this we have n? different strings, we select, A of them and go to their subtrees. Fach selected
subtree has average size n?/o since we have selected the substrings that are continued with some
letter. The recurrence and its solution is

T(nz) = AT(nz/U) = O(nzl(’g”A)

Therefore the search of a single string (no rotations allowed yet) takes O(n®), for o = 2log, A.
If we allow rotations, then all them exist up to depth h. So we have that the amount of work
up to there is

h—1
SOAY = 0 (0 (log, n)*?)
/=1

and the same happens to the second part of the search. Indexing the rotations is not a good
idea now, because the cost to traverse the dense part of the tree is very high. If we index all
the rotations up to depth H = zlog,n for & > 2 then the first part of the traversal will cost
O(AT = p7lo8s ) = (07 (log, n)?/?).



If we consider that the distribution is uniform then, by taking the maximum (minimum) over 9
samples of a uniform distribution we get at 9/10 of the real maximum (minimum). Hence A/o = 4/5
and a = 2(1 — 1/logs 4 ).

6 Conclusions and Future Work

We have proposed a suffix tree index to search two dimensional patterns in two dimensional texts
allowing rotations. The proposed method works best for circular and without-holes patterns. Oth-
erwise we should take the biggest circle inside the pattern with that property, search it using the
suffix tree, and check the rest directly in the text occurrences.

On average, it is enough that a circle containing more than 2log, n characters can be found
inside the pattern to make the total cost of this verification negligible. This means a circle of radius
at least \/2/x log, n.

It is possible to extend the model to not needing to match pattern centers against text centers.
Tn this case the number of patterns grows as O(m7) and therefore there are O(£7/?) sistrings to
search at depth (. The search time becomes O(log,, 77/)9/2. By indexing all the rotations and center
displacements we get O(log, n) time again, but at a space cost of O(n?(log, n)7/?).

It is also possible to extend the method to 3 dimensions [3]. With center to center assumption
we have O(m'1) rotations. This means O(£'1/3) sistrings at depth £. Therefore, at O(n?) space the

total search time becomes O(log, n)'*/?

, and if we index all the rotations up to H = xlog, n with
2 > 3 we will have a space requirement of O(n?(log, n)'"/?) and a search cost of O(log, n). For
gray levels we have again O(n”) (for & = 2(1 — 1/log;4/130)) and indexing more rotations helps
little (now o = 3log, A).

Finally, it is interesting to extend this method to allow errorsin the matches. Standard techniques
of one-dimensional string matching can be applied [8], but the cost will have a part exponential on

the number of errors allowed [7].
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